• Title/Summary/Keyword: 연소시스템

Search Result 912, Processing Time 0.028 seconds

Measurements and Calculation of Injection Mass Rate of LFG for Intake Injection in Spark Ignition Engines (불꽃점화 엔진의 흡기관 분사를 위한 매립지가스 분사량의 측정 및 계산)

  • Kim, Kyoungsu;Choi, Kyungho;Jeon, Wonil;Kim, Bada;Lee, Daeyup
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.36-42
    • /
    • 2021
  • When the landfill gas generated at the landfill site is released into the atmosphere, methane gas with a high global warming potential is emitted, which adversely affects climate change. When methane contained in landfill gas is used as fuel for internal combustion engines and burned to generate electricity, it is emitted into the atmosphere in the form of carbon dioxide, which can contribute to lowering the global warming potential. Therefore, in order to use the landfill gas as fuel for power generation using an internal combustion engine, it is important to increase the thermal efficiency of the engine. Thus, it is necessary to use a fuel supply system in which gas is injected using an electronically controlled injector at an intake port for each cylinder rather than a fuel supply technology using the conventional mixer technology. In order to use the electronically controlled gas injection method, it is important to accurately measure the mass flow rate according to the conditions of using landfill gas. For this, a study was conducted to measure the injection amount and calculate them in order for the intake port gas injection of landfill gas.

An Experimental Study on the Influence of the Spread of Firebrand on Building Exterior Materials and Roofing Materials in Urban Areas (도심지 인접 산불의 불티 확산이 건축물 외장재와 지붕재에 미치는 영향에 관한 실험적 연구)

  • Min, Jeong-Ki
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.617-626
    • /
    • 2021
  • Purpose: The purpose of this study is to evaluate the fire srpead risk of building exterior and roofing materials due to the firebrand of forest fire occurring in the urban areas. Method: In order to achieve this research purpose, by selecting building materials used for exterior and roofing materials of buildings, the time to ignition, total heat release, and heat release rate were investigated, and a forest fire firebrand system was established to the possibility of fire spread was confirmed. Result: As a result of the cone calorimeter test, the roofing material had a similar or faster ignition time due to radiant heat compared to the exterior material with the steel plate exposed to the outside, and showed a higher heat release rate and total heat release than the exterior material. Although it was affected by the flammable material, it was confirmed that it did not spread easily due to the limited amount of combustible material, and carbonization marks appeared inside. Conclusion: The cone calorimeter test method has been shown to be useful in understanding the combustion characteristics of building materials by radiant heat, but the fire spread due to a firebrand in a forest fire is directly affected by the flame due to the ignition of surrounding combustibles, so finding a direct correlation with the cone calorimeter method is difficult. It is judged that the roof material may be more vulnerable to the spread of fire due to the fire than the exterior material.

CFD Analysis on the Internal Reaction in the SNCR System (SNCR 시스템 내부의 물질 반응에 관한 전산해석적 연구)

  • Koo, Seongmo;Yoo, Kyung-Seun;Chang, Hyuksang
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.63-73
    • /
    • 2019
  • Numerical analysis was done to evaluate the chemical reaction and the reduction rate inside of selective non-catalytic reduction to denitrification in combustion process. The $NO_X$ reduction in selective non-catalytic reduction is converted to not only nitrogen but also nitrous oxide. Simultaneous $NO_X$ reduction and nitrous oxide generation suppressing is required in selective non-catalytic reduction because nitrous oxide influences the global warming as a greenhouse gas. The current study was performed compare the computational analysis in the same temperature and amount of NaOH, and in comparison with the previous research experiments and confirmed the reliability of the computational fluid dynamics. Additionally, controlling the addition amount of NaOH to predict the $NO_X$ reduction efficiency and nitrous oxide production. Numerical analysis was done to check the mass fraction of each material in the measurement point at the end of selective non-catalytic reduction. Experimental Value and simulation value by numerical analysis showed an error of up to 18.9% was confirmed that a generally well predicted. and it was confirmed that the widened temperature range of more than 70% $NO_X$ removal rate is increased when the addition amount of NaOH. So, large and frequent changes of the reaction temperature waste incineration facilities are expected to be effective.

A Study on the Element Technologies in Flame Arrester of End Line (선박의 엔드라인 폭연방지기의 요소기술에 관한 연구)

  • Pham, Minh-Ngoc;Choi, Min-Seon;Kim, Bu-Gi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.468-475
    • /
    • 2019
  • An end-line flame arrester allows free venting in combination with flame protection for vertical vent applications. End-line flame arresters are employed in various fields, especially in shipping. In flame arresters, springs are essential parts because the spring load and the spring's elasticity determine the hood opening moment. In addition, the spring has to work under a high-temperature condition because of the burning gas flame. Therefore, it is necessary to analyze the mechanical load and elasticity of the spring when the flame starts to appear. Based on simulations of the working process of a specific end-line flame arrester, a thermal and structural analysis of the spring is performed. A three-dimensional model of a burned spring is built using computational fluid dynamics (CFD) simulation. Results of the CFD analysis are input into a finite element method simulation to analyze the spring structure. The research team focused on three cases of spring loads: 43, 93, and 56 kg, correspondingly, at 150 mm of spring deflection. Consequently, the spring load was reduced by 10 kg after 5 min under a $1,000^{\circ}C$ heat condition. The simulation results can be used to predict and estimate the spring's load and elasticity at the burning time variation. Moreover, the obtained outcome can provide the industry with references to optimize the design of the spring as well as that of the flame arrester.

Evaluating meteorological and hydrological impacts on forest fire occurrences using partial least squares-structural equation modeling: a case of Gyeonggi-do (부분최소제곱 구조방정식모형을 이용한 경기도 지역 산불 발생 요인에 대한 기상 및 수문학적 요인의 영향 분석)

  • Kim, Dongwook;Yoo, Jiyoung;Son, Ho Jun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.3
    • /
    • pp.145-156
    • /
    • 2021
  • Forest fires have frequently occurred around the world, and the damages are increasing. In Korea, most forest fires are initiated by human activities, but climate factors such as temperature, humidity, and wind speed have a great impact on combustion environment of forest fires. In this study, therefore, based on statistics of forest fires in Gyeonggi-do over the past five years, meteorological and hydrological factors (i.e., temperature, humidity, wind speed, precipitation, and drought) were selected in order to quantitatively investigate causal relationships with forest fire. We applied a partial least squares structural equation model (PLS-SEM), which is suitable for analyzing causality and predicting latent variables. The overall results indicated that the measurement and structural models of the PLS-SEM were statistically significant for all evaluation criteria, and meteorological factors such as humidity, temperature, and wind speed affected by amount of -0.42, 0.23 and 0.15 of standardized path coefficient, respectively, on forest fires, whereas hydrological factor such as drought had an effect of 0.23 on forest fires. Therefore, as a practical method, the suggested model can be used for analyzing and evaluating influencing factors of forest fire and also for planning response and preparation of forest fire disasters.

Study for Failure Examples Including with Gas filter Clogging of Emergency Cutting Valve, Assemblying Part Damage of Solenoid Valve, Contact Damage of LPG Switch Connector Fin in a LPG Car (LPG 자동차의 긴급차단밸브 기상필터막힘, 솔레노이드밸브 조립부손상, LPG 스위치 커넥터 핀 접촉불량에 관련된 고장사례 연구)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Kim, Jee Hyun;Kim, Sung Mo;Jung, Dong Hwa;You, Chang Bae;Moon, Hak Hoon;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • This paper is a purpose to study and analyze the engine starting failure examples for LPG car. The first example, the researcher verified the phenomenon that didn't supply the fuel because of filter clogging by fine alien substance in the gas valve line when he inspected the emergency cutting valve. The second example, there was no the influence of gas leakage when the solenoid operated at first. But the damage part of solenoid assemblying face wad downed a durability according to running a valve. Eventually, the researcher checked on the phenomenon of engine stopping by no gas feeding in solenoid because of leaking of gas. The third example, the researcher sought that the wiring sheaths of connector fin between EGR 10A fuse and LPG switch verified the burn-out phenomenon due to the bad contacting as tension damage produced the overheating. Therefore, the manager of a car has to do pre-inspection no producing electric failure and he must maintain his car with optimum condition.

Experimental Study of Fire Characteristics by Isocyanate Functional Parameter (이소시아네이트 관능기 매개인자에 의한 화재 특성의 실험적 연구)

  • Lee, Jae-Geol;Han, Kyoung-Ho;Jo, Hyung-Won;Yoon, Do-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.27-37
    • /
    • 2022
  • With the recent increase in the spread of ESS (Electric Storage System), the damage to human life and property is also rapidly increasing due to continuous fires caused by ESS. In the manufacture of urethane sandwich panels used in ESS, it is necessary to improve the flame retardant performance. In this study, in order to realize the flame retardant properties of flexible polyurethane foam, the effect of the tissue density of the product due to the change of the isocyanate functional group parameter that changes the physical properties of the product on the fire performance was studied. The product was manufactured by changing the density of the urethane structure, and combustion performance tests, gas toxicity tests, and smoke density tests were performed. As a result, it was confirmed that the total amount of heat released had excellent performance when the isocyanate functional group was high, and had no correlation with the maximum heat release rate. When the value of the isocyanate functional group was 2.7 or more, the collapse of the shape could be prevented. In the gas hazard test, the performance was increased when the isocyanate functional group was relatively high, so a flame retardant for the Char system, which had a dense structure and easy to form a carbonized film, was added. confirmed to be. Therefore, as a result of this study, it is thought that it will be possible to lay the foundation for the development of a flame retardant to replace the cheap urethane sandwich panel used in the past.

Conceptual Design of a LOX/Methane Rocket Engine for a Small Launcher Upper Stage (소형발사체 상단용 액체메탄 로켓엔진의 개념설계)

  • Kim, Cheulwoong;Lim, Byoungjik;Lee, Junseong;Seo, Daeban;Lim, Seokhee;Lee, Keum-Oh;Lee, Keejoo;Park, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.4
    • /
    • pp.54-63
    • /
    • 2022
  • A 3-tonf class liquid rocket engine that powers the upper stage of a small launcher and lifts 500 kg payload to 500 km SSO is designed. The small launcher is to utilize the flight-proven technology of the 75-tonf class engine for the first stage. A combination of liquid oxygen and liquid methane has been selected as their cryogenic states can provide an extra boost in specific impulse as well as enable a weight saving via the common dome arrangement. An expander cycle is chosen among others as the low-pressure operation makes it robust and reliable while a specific impulse of over 360 seconds is achievable with the nozzle extension ratio of 120. Key components such as combustion chamber and turbopump are designed for additive manufacturing to a target cost. The engine system provides an evaporated methane for the autogenous pressurization system and the reaction control of the stage. This upper stage propulsion system can be extended to various missions including deep space exploration.

Research on the Rheological Properties of Aqueous Film Forming Foam to Respond to Ship Oil Fires (함정 유류화재 대응을 위한 수성막포의 유변학적 특성 연구)

  • Kil-Song Jeon;Hwi-Seong Kim;Jung-Hoon You;Yong-Ho Yoo;Jin-Ouk Park
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.603-607
    • /
    • 2023
  • Aqueous film forming foam (AFFF) is a critical fire suppression agent used in combating hydrocarbon fires. This type of fire suppressant is highly effective due to its ability to form a protective film, dissipate heat, inhibit combustion, and utilize a blend of chemical substances to extinguish fires. While these properties offer significant advantages in responding to hydrocarbon fires, AFFF is distinct in its deployment as it is dispensed in the form of foam. Therefore, the rheological analysis of AFFF foam using a rheometer plays a crucial role in predicting the spray characteristics of AFFF for combating hydrocarbon fires, and this is closely associated with effective fire suppression. In this study, we conducted rheometer experiments to confirm the non-Newtonian behavior (shear-thinning) of AFFF foam and obtained data on the form's stability. These experimental data are expected to contribute to enhancing the efficiency of fire suppression systems utilizing AFFF.

Suggestion for Technology Development and Commercialization Strategy of CO2 Capture and Storage in Korea (한국 이산화탄소 포집 및 저장 기술개발 및 상용화 추진 전략 제안)

  • Kwon, Yi Kyun;Shinn, Young Jae
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.381-392
    • /
    • 2018
  • This study examines strategies and implementation plans for commercializing $CO_2$ capture and storage, which is an effective method to achieve the national goal of reducing greenhouse gas. In order to secure cost-efficient business model of $CO_2$ capture and storage, we propose four key strategies, including 1) urgent need to select a large-scale storage site and to estimate realistic storage capacity, 2) minimization of source-to-sink distance, 3) cost-effectiveness through technology innovation, and 4) policy implementation to secure public interest and to encourage private sector participation. Based on these strategies, the implementation plans must be designed for enabling $CO_2$ capture and storage to be commercialized until 2030. It is desirable to make those plans in which large-scale demonstration and subsequent commercial projects share a single storage site. In addition, the plans must be able to deliver step-wised targets and assessment processes to decide if the project will move to the next stage or not. The main target of stage 1 (2019 ~ 2021) is that the large-scale storage site will be selected and post-combustion capture technology will be upgraded and commercialized. The site selection, which is prerequisite to forward to the next stage, will be made through exploratory drilling and investigation for candidate sites. The commercial-scale applicability of the capture technology must be ensured at this stage. Stage 2 (2022 ~ 2025) aims design and construction of facility and infrastructure for successful large-scale demonstration (million tons of $CO_2$ per year), i.e., large-scale $CO_2$ capture, transportation, and storage. Based on the achievement of the demonstration project and the maturity of carbon market at the end of stage 2, it is necessary to decide whether to enter commercialization of $CO_2$ capture and storage. If the commercialization project is decided, it will be possible to capture and storage 4 million tons of $CO_2$ per year by the private sector in stage 3 (2026 ~ 2030). The existing facility, infrastructure, and capture plant will be upgraded and supplemented, which allows the commercialization project to be cost-effective.