• Title/Summary/Keyword: 연소모델

Search Result 900, Processing Time 0.024 seconds

Design of a fuzzy model predictive controller for combustion control of refuse incineration plant (쓰러기 소각로의 연소제어를 위한 퍼지모델 예측제어기 설계)

  • 박종진;강신준;남의석;김여일;우광방
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.43-50
    • /
    • 1997
  • Refuse incineration plant operations involve many kinds of uncertain factors, such as the variable physical properties of refuse as fuel and the complexity of the burning phenomenon. This makes it very dificult to apply conventional control methods to the combustion control of the refuse. So most of the refuse incineration plant are operated by operators. In this paper, an multi-variable fuzzy model predictive controller is proposed for the combustion control of the re:fuse. Adaptive network based fuzzy inference system is used for modeling of the refuse incineration plant and multi-variable fuzzy model predictive controller is designed based on the identified fuzzy model. And computer simulation was carried out to evaluate performance of the proposed controller.

  • PDF

Gain Scheduling Controller Design and Performance Evaluation for Thrust Control of Variable Thrust Solid Rocket Motor (가변 추력 고체추진기관의 추력 제어를 위한 이득 계획 제어기 설계 및 성능 분석)

  • Hong, SeokHyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.28-36
    • /
    • 2016
  • Theoretical model of a variable thrust solid rocket motor with a pintle nozzle was derived. For the chamber pressure control, classical model linearization and proportional-intergral controller was used. And then two types of gain scheduling controller were suggested to imporve controller performance for the non-linear propulsion model. Considering characteristics of systems, control gains were scheduled by chamber pressure or free volume. Step responses of each controllers were compared. As a result, the proper control algorithm about characteristics of variable thrust rocket motor was suggested.

Control law design of gas generator for secondary combustion (이차 연소를 위한 가스발생기의 압력 제어기법 연구)

  • Park, Ik-Soo;Lee, Jae-Yoon;Choi, Ho-Jin;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.565-568
    • /
    • 2010
  • A pressure control law to regulate mass flow rate of gas generator is suggested. The governing equation is modeled by considering the burning rate of solid propellant and the conservation equation of gas generator. And then, a classical control law is applied after verifying the accuracy of dynamic model through comparing with ground test and internal ballistic results. The results show degradation of performance as shown in typical time varying system. To overcome this problem, an adaptive scheme is suggested and the performance is verified through numerical simulation.

  • PDF

Acoustical Dynamic Response Analysis of a Gas Turbine Combustor Using a Sine-Sweep Forcing Model (사인-스윕 가진 모델을 통한 가스터빈 연소기의 음향 동적 반응 해석)

  • Son, Juchan;Kim, Daesik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.4
    • /
    • pp.1-9
    • /
    • 2022
  • In the current study, in order to understand the dynamic response characteristics of the system according to the external acoustic forcing, a numerical approach was developed by adding an sign-sweep forcing function to the existing network model. Through this model, the sensitivity of frequency and pressure amplitude changes according to system parameters such as the physical dimensions and boundary conditions of the target combustor was analyzed in a wide frequency range. Analysis results of dynamic response characteristics of the target combustor are shown that the frequency regime with high dynamic pressure response was similar to the instability frequency range measured in the same combustor, and in particular, the response of the system depends greatly on the location of the acoustic forcing source term.

Development Trend of Korean Staged Combustion Cycle Rocket Engine (한국형 다단연소사이클 로켓엔진 개발 동향)

  • Kim, Chae-hyoung;Han, Yeoung Min;Cho, Namkyung;Kim, Seung-Han;Yu, Byungil;Lee, Kwang-Jin;So, Younseok;Woo, Seongphil;Im, Ji-Hyuk;Hwang, Chang Hwan;Lee, Jungho;Kim, Jin-han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.79-87
    • /
    • 2017
  • Korea Aerospace Research Institute has being developed a staged combustion cycle rocket (SCCR) engine with high specific impulse to send a 3-ton class satellite into geostationary orbit while conducted Korean Space Launch Vehicle (KSLV) II project. The SCCR engine is different from the KSLV-II engine, which is open cycle engine using a gas-generator. The SCCR engine with closed cycle is composed of a pre-burner, a turbo pump, and a main combustor. The technology demonstration model (TDM0) was assembled and tested in the 7ton-class engine combustion test facility of Naro Space Center, and the combustion test was successfully conducted. Afterward engine-shaped SCCR engine model (TDM1) is being designed and developed for the next combustion test.

  • PDF

A Study for Rocket Exhaust Flow Cooling due to the Central Spray Type Water Injection (중앙 분사 방식 냉각수 투입에 의한 로켓 연소 후류 냉각에 관한 연구)

  • Kang, Sun-Il;Nam, Jung-Won;Huh, Hwan-Il
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.163-172
    • /
    • 2013
  • In this study, the cooling of rocket exhaust plume by sprayed water inside plume were investigated as varying of sprayed water mass, location, and method using computational fluid analysis. For Analyze rocket exhaust plume, a single species unreacted analysis model based on the chemically frozen analysis was used and the discrete particle model which was a kind of Euler-Lagrangian analysis model was used for simulate sprayed water inside plume. It was confirmed that the temperature of plume was reduced without cooling when water mass was two times of plume mass through analysis results.

Convective and radiative heat transfer in IC engines (연소실 대류 및 복사 열전달 해석)

  • 허강열
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.11-17
    • /
    • 1991
  • 내연기관의 열전달은 구조물에 따라 흡기계통, 연소실, 배기계통으로 나누어지고, 열전달기구에 따라 전도, 대류, 복사로 나누어지며, 여기서는 그중 가장 핵심이 되는 연소실 내에서의 대류 및 복사 열전달 현상에 관하여 논하고자 한다. 연소실 열전달의 정량적 해석을 위해서는 흡기계통과 피스톤 운동에 의한 3차원 압축성 난류 유동장과 점화, 착화 및 연소 진행과정, 이들의 복합적 상호 작용에 대한 이해가 선행되어야 한다. 여기서는 현재까지 제시된 연소실 열전달의 정량적 모델과 문제점,앞으로의 연구 진행방향에 대해 소개하고자 한다.

  • PDF

액체 연료 추진기관의 연소 불안정 해석

  • 김용모;유용욱
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.8-8
    • /
    • 1998
  • 액체 추진제를 사용하는 연소기관내의 연소 불안정 현상에 대하여 수치적인 해석을 수행하였다 비정상 다차원 다상 유동장에 대한 Eulerian-Lagrangian 방법에 기반을 두고 수학적으로 모델 하였으며 속도-압력-밀도에 대한 결합메커니즘은 개선된 PISO 알고리즘을 사용하여 처리하였다. 연소실의 기하학적 형상 및 추진제의 분무조건이 액체 연료 추진기관의 연소 불안정 현상에 미치는 영향을 체계적으로 해석하였으며 액체 추진제의 증발 특성이 연소 불안정 현상의 Driving Mechanism에 미치는 영향을 상세히 분석하였다.

  • PDF