• Title/Summary/Keyword: 연성-취성

Search Result 226, Processing Time 0.024 seconds

A Study on the Similitude of member Behavior for Small-Scale Modeling of Reinforced Concrete Structure (철근콘크리트 축소모델의 부재거동 상사성에 관한 연구)

  • 이한선;장진혁
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.177-185
    • /
    • 1996
  • Four types of experiments were performed to check the similitude of member behavior between prototype and 1 /10 scale models : (1) Test of slender columns with P-$\Delta$ effect, (2) Test of short columns with and without confinement steel, (3) Test of simple beams without stirrups, and (4) 'T-beam test. Based on the results of experiments, the conclusions were made as follows : (1) The P-$\Delta$ effect of slender columns can be almost exactly represented by 1/10 scale model. (2) The effect of confinement on short columns by the hoop steel can be also roughly simulated by 1/10 scale model. (3) The failure modes of simple beams without stirrups are brittle shear failures in prototype whereas those of 1/10 scale models are the ductile yielding of tension steel followed by large diagonal tension cracking and compressive concrete failure. (4) The behaviors of prototype and 1/10 scale model in T-beams appear very similar.

Determination of Steel-Concrete Interface Parameters : Bonded and Unbonded Slip Tests (강-콘크리트 계면의 계면상수 결정 : 부착 및 비부착 슬립실험)

  • Lee, Ta;Joo, Young-Tae;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.773-780
    • /
    • 2009
  • Experiments on steel-concrete interface are performed to investigate and determine the mechanical roles and properties of interface parameters. The intrinsic different nature of bonded and unbonded interfaces are addressed based on the experimental observations that were obtained from two types of tests considering bonded and unbonded interfaces. The unbonded tests are performed for the specimens that are in unbonded when the initially bonded specimens are tested first. Four cases of lateral confinements including pure slip, and low and medium levels of lateral pressure are taken into account to investigate the effects of lateral confinements on interface behavior. It is shown that the maximum shear strengths, the levels of residual strengths and the Mode II fracture energy release rates are linearly related to the confinement levels. Based on the experimental evidences obtained from this study, the values of interface parameters required in a steel-concrete interface constitutive model will be presented in the companion paper.

Structural Behavior of Reinforced Concrete Short Columns by Pseudo-Dynamic Test (유사동적실험을 이용한 철근콘크리트 단주실험에 관한 연구)

  • Min, Kyung-Min;Kim, Yong-In;Lee, Kang-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.73-76
    • /
    • 2008
  • According to the survey of earthquake disaster, low-rise reinforced concrete building larger by the extent of damage and because of the underlying distribution of reinforced concrete structures more, it is very likely to be disasters. The purpose of this study is to discuss how strength and stiffness of each system in low-rise reinforced concrete buildings consisted of extremely brittle, shear and flexural failure lateral-load resisting systems have influence on seismic capacities of the overall system. Generally, if shear failure members including extremely brittle failure members are failed during an earthquake, the lateral-load resisting seismic capacities of RC buildings are lower rapidly, and if the seismic capacities of shear failure members were higher than that of flexural failure members, failures of shear failure members have influence on failures of the overall system. The result of this paper will provide pseudo-dynamic test of carried out to estimate the possibility of proposals.

  • PDF

Degradation Degree Evaluation of Heat Resisting Steel by Electrochemical Technique Part 2 : Effect of Testing Conditions on Evaluation Value of Degradation Degree and Changes of Mechaical Properties (전기화학적 방법에 의한 내열강의 열화도측정 제2보 : 열화도측정치에 미치는 측정조건들의 영향과 기계적성질 변화에 대해서)

  • 정희돈;권영각;장래웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.300-312
    • /
    • 1993
  • The material deterioration of service-exposed boiler tube steels in fossil power plant was evaluated by using the electrochemical technique namely, modified electrochemical potentiokinetic reactivation(EPR). It was focused that the passivation of Mo$_{6}$C carbide which governs the mechanical properties of Mo alloyed steels did not occur even in the passivity region of steel in sodium molybdate solution and the reactivation peak current (Ip) observed as the result of non-passivation indicating the precipitation of Mo$_{6}$C carbides. To obtain the optimal test conditions for the field test by using the specially designed electrochemical cell, the effects of scan rate, the surface roughness and the pH of electrolyte on Ip value were also investigated. Furthermore, the change of mechanical properties occurred during the long time exposure at high temperature was evlauated quantitatively by small punch(SP) tests and micro hardness test taking account of the metallurgical changes. It is known that reactivation peak current (Ip) has a good relationship with Larson-Miller Parameter(LMP) which represents the information about material deterioration occurred at high temperature environment. In addition it was possible to estimate the ductile-brittle transition temperature (DBTT) by means of the SP test. The Sp test could be, therefore, suggested as a reliable test method for evaluating the material degradation of boiler tube steels. From the good correaltion between the SP DBTT and Ip values shown in this study, it was knows that the change of mechanical properties could be evaluated non-destructively by measurring only Ip values.ues.

Creep Properties of Sn-3.5Ag-xBi Solders (Sn-3.5Ag-Bi 솔더의 크리프 특성)

  • Shin, S. W.;Yu, Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.25-33
    • /
    • 2001
  • Sn-3.5Ag-xBi alloys with five different levels of Bi (0, 2.5, 4.8, 7.5, 10 wt%) were prepared for evaluating creep properties. Cast alloys were roiled and heat treated to provide stable microstructures during the subsequent creep tests, which were conducted under constant load using dog-bone specimens. For the Bi containing alloys, creep strength showed the maximum around 2.5 wt%Bi and tended to decrease with increasing Bi content. The stress exponent of the alloy was around 4, suggesting typical dislocation creep, but the exponent was 2 for the 10 wt%Bi alloy, suggesting creep assisted by grain boundary Sliding. For the Bi containing alloys, the brittle fracture mode appeared showing small amount of reduction of area, while the ductile fracture mode was true for the Bi free alloy. Microstructural examination of ruptured specimens showed cavitations on grain boundaries normal to the load axis, and a significant of grain boundary sliding for the Bi containing alloys.

  • PDF

Integral Method of Stability Analysis and Maintenance of Slope (비탈면 안정해석과 유지관리의 통합해석기법)

  • Park, Mincheol;Yoo, Byeongok;Baek, Yong;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.3
    • /
    • pp.27-35
    • /
    • 2016
  • Even if the various data analyzing methods were suggested to examine the measured slope behaviors, it is difficult to find methods or procedures for connecting the analyzed results of slope stability and measured slope data. This research suggests the analyzing methods combing the stability analysis and measured data based on progressive failure of slope. Slope failure analysis by time degradation were calculated by strength parameters composed of strength reduction coefficients, also which were compared to the measured data according to the variations of safety factor and displacement of slopes. The accumulated displacement curve were shown as 3rd degree polynomials by suggested procedures, which was the same as before researches. The reverse displacement velocity curves were shown as linear function for prediction of brittle slope failures, also they were shown as 3rd degree polynomials for ductile slope failures, which were the same as the suggested equation by Fukuzono (1985) and they were very similar behaviors to the in-situ failure cases.

Interfacial Evaluation and Nondestructive Damage Sensing of Carbon Fiber Reinforced Epoxy-AT-PEI Composites using Micromechanical Test and Electrical Resistance Measurement (Micromechanical 시험법과 전기저항 측정을 이용한 탄소섬유 강화 Epoxy-AT-PEI복합재료의 비파괴적 손상 감지능 및 계면물성 평가)

  • Joung-Man Park;Dae-Sik Kim;Jin-Woo Kong;Minyoung Kim;Wonho Kim
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.62-67
    • /
    • 2003
  • Interfacial properties and damage sensing for the carbon fiber/epoxy-amine terminated (AT)-polyetherimide (PEI) composite were performed using microdroplet test and electrical resistance measurements. As AT-PEI content increased, the fracture toughness of epoxy-AT-PEI matrix increased, and interfacial shear strength (IFSS) increased due to the improved fracture toughness by energy absorption mechanisms of AT-PEI phase. The microdroplet in the carbon fiber/neat epoxy composite showed brittle microfailure mode. At 15 phr AT-PEI content ductile microfailure mode appeared because of improved fracture toughness. After curing, the change in electrical resistance $\Delta\textrm{R}$) with increasing AT-PEI content increased gradually because of thermal shrinkage. Under cyclic stress, in the neat epoxy case the reaching time until same stress was faster and their slope was higher than those of 15 phr AT-PEI. The result obtained from electrical resistance measurements under curing process and reversible stress/strain was correspondence well with matrix toughness properties.

Program Development for Material Degradation Evaluation Using Grain Boundary Etching Method (입계부식법을 이용한 열화도 평가 프로그램 개발)

  • Yu, Hyo-Seon;Baek, Seung-Se;Na, Seong-Hun;Kim, Jeong-Gi;Lee, Hae-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1064-1072
    • /
    • 2001
  • It is very important to evaluate material degradation like temper and carbide embrittlements to secure the reliable and efficient operational conditions and to prevent brittle failure in service. The extent of material deterioration can be accurately evaluated by mechanical test such as impact test or creep test. But it is almost impossible to sample a large specimen from in-service plants. Thus, the material degradation evaluation by a non-destructive method is earnestly required. Recently the non-destructive test technique which uses the grain boundary etching characteristics owing to the variation of material structures has been proposed. However the program for material degradation evaluation using the grain boundary etching method(GEM) in Windows 98 domain doesnt be developed now. The aims of this paper are to develop the program and to complete the new master curve equations for the evaluation of material degradation on in-serviced high temperature components.

A Study on Material Degradation Evaluation of 9Cr1MoVNb Steel by Micromechanics Test Method (미소역학 시험기법에 의한 9Cr1MoVNb강의 열화도 평가)

  • Baek, Seung-Se;Na, Sung-Hoon;Yoo, Hyun-Chul;Lee, Song-In;Ahn, Haeng-Gun;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.105-110
    • /
    • 2000
  • The Micromechanics test is new test method which uses comparatively smaller specimen than that required in conventional material tests. There are several methods, such as small-specimen creep test, the continuous indentation test, and small punch(SP) test. Among them, the small punch(SP) test method has been applied to many evaluation fields, such as a ductile-brittle transition temperature, stress corrosion cracking, hydrogen embrittlement, and fracture properties of advanced materials like FGM or MMC. In this study, the small punch(SP) test is performed to evaluate the mechanical properties at high/low temperature from $-196^{\circ}C$ to $650^{\circ}C$ and the material degradation for virgin and aged materials of 9Cr1MoVNb steel which has been recently developed. The ${\Delta}P/{\Delta}{\delta}$ parameter defined a slope in plastic membrane stretching region of SP load-displacement curve decreases according to the increase of specimen temperature, and that of aged materials is higher than the virgin material in all test temperatures. And the material degradation degrees of aged materials with $630^{\circ}C$ -500hrs and $630^{\circ}C$ -1000hrs are $36^{\circ}C$ and $38^{\circ}C$ respectively. These behaviors are good consistent with the results of hardness($H_v$) and maximum displacement(${\delta}_{max}$).

  • PDF

Effect of Ti Contents on characteristics of 700Mpa Weld Metal (Ti 함량에 따른 700MPa급 용착금속의 특성 변화)

  • Park, H.K.;Kim, H.J.;Seo, J.S.;Ryoo, H.S.;Ko, J.H.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.47-47
    • /
    • 2009
  • 용착금속의 미세조직은 크게 Acicular ferrite(AF), Ferrite with aligned second phase(FS), Primary ferrite(=Grain boundary Ferrite) 등으로 나눌 수 있다. 이 중 침상형 페라이트(AF)는 인성과 강도를 동시에 증가시킬 수 있으므로 이를 다량 확보하는 것이 용접산업의 관건이다. 본 연구에서는 침상형 페라이트 발생에 기여한다고 알려진 Ti 함량을 용착금속에서 단계적으로 조절하여 나타나는 미세조직과 특성변화를 관찰하였다. 모재는 HSB-600을 사용하였으며 용접재료는 ER100S-G급의 Ti가 함유되어 있는 것(A)과 미함유된 것(B)을 사용하였다. 모재 성분의 희석을 방지하기 위해 V-Groove 가공 후 Buttering 용접을 실시하였다. 중앙에 가공된 V-그루브에 이들 재료를 적절히 조합하고 용접(입열량 20kJ/cm)하여 Ti함유량을 총 4가지(0.002~0.025% Ti)로 제어하였다. 용접 후 각각의 시편에 대해 미세조직, 충격시험, O/N분석, 성분분석 등의 시험을 진행하였다. 미세조직 관찰결과 Ti함량이 증가할수록 AF는 증가하고 FS는 감소함을 확인할 수 있었으며 충격시험결과 Ti가 많이 함유된 시편일수록 더 낮은 연성취성 천이온도(DBTT)를 나타내었다. EDS와 SEM으로 관찰한 결과 Ti함량 증가에 따라 비금속개재물의 크기는 작아지고 밀도는 높아지는 것을 확인할 수 있었으며 개재물 내에서의 Ti함량도 더 많아지는 것을 확인 할 수 있었다.

  • PDF