• 제목/요약/키워드: 연성-취성천이온도

검색결과 30건 처리시간 0.026초

고강도 구조용강의 저온 충격특성 평가 (Evaluation of Impact Characteristics for High Strength Structural Steel at Low Temperature)

  • 김재훈;김덕회;김후식;조성석;전병완;심인옥
    • 한국추진공학회지
    • /
    • 제5권3호
    • /
    • pp.1-9
    • /
    • 2001
  • 잠수함용 재료로 개발된 고강도 구조용강의 충격 시험이 수행되었다. 특히 샤르피 충격시험기를 이용하여 저온에서 구조용 강의 충격특성을 평가하였다. 최소흡수에너지, 최대흡수에너지, 연성 취성 천이온도를 결정하기 위하여 hyperbolic tangent curve fitting법을 이용하였다. 시험결과로부터 샤르피 충격에너지와 횡팽창량 사이의 비례 관계식을 산출하였다. 시험온도 변화에 따른 파단면 특성을 평가하기 위하여 SEM을 이용하여 파단면을 관찰하였다.

  • PDF

입계부식법을 이용한 열화도 평가 프로그램 개발 (Program Development for Material Degradation Evaluation Using Grain Boundary Etching Method)

  • 유효선;백승세;나성훈;김정기;이해무
    • 대한기계학회논문집A
    • /
    • 제25권7호
    • /
    • pp.1064-1072
    • /
    • 2001
  • It is very important to evaluate material degradation like temper and carbide embrittlements to secure the reliable and efficient operational conditions and to prevent brittle failure in service. The extent of material deterioration can be accurately evaluated by mechanical test such as impact test or creep test. But it is almost impossible to sample a large specimen from in-service plants. Thus, the material degradation evaluation by a non-destructive method is earnestly required. Recently the non-destructive test technique which uses the grain boundary etching characteristics owing to the variation of material structures has been proposed. However the program for material degradation evaluation using the grain boundary etching method(GEM) in Windows 98 domain doesnt be developed now. The aims of this paper are to develop the program and to complete the new master curve equations for the evaluation of material degradation on in-serviced high temperature components.

열화된 1Cr-1Mo-0.25V강의 DBTT 크기효과 보정에 관한 연구 (Normalization of DBTT Size Effect far Aged 1Cr-lMo-0.25V Steel)

  • 남승훈;김엄기;이대열
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.2109-2115
    • /
    • 2001
  • Miniaturized specimen technology is useful to characterize the mechanical behavior when it is difficult to sample the material enough for the test. In this study, two kinds of miniaturized Charpy impact specimens(i.e., miniaturized specimen with side groove and without side groove) of aged 1Cr- lMo-0.25V steel were prepared and tested. The relationship between the extent of degradation in terms of ductile brittle transition temperature(DBTT) and the fracture stress of 1Cr-1Mo-0.25V steel was established. The fracture stress obtained from miniaturized specimen without side groove turned out to be linearly related with the DBTT of standard specimen. Therefore the fracture toughness of aged turbine rotor steel might be evaluated by the fracture stress. In addition, the correlation between DBTT of standard specimen and that of miniaturized specimen was investigated. As the results of normalizing DBTT by maximum elastic tensile stress, the normalized DBTT of miniaturized specimen without side groove allows one to estimate that of standard specimen.

AH36-TMCP강의 용접후열처리 효과에 관한 연구 (A Study on Effect of PWHT in AH36-TMCP Steel)

  • 유효선;장원상;안병국;정세희
    • Journal of Welding and Joining
    • /
    • 제16권6호
    • /
    • pp.44-51
    • /
    • 1998
  • It is well known that the fine bainitic microstructure obtained by TMCP(thermo-mechanical control process) secures the high toughness of base metal. Besides, TMCP steel is very suitable for high heat input in welding as it has low carbon equivalent. In HAZ, however, the accelerated cooling effect imparted on the matrix by the weld thermal cycles is relieved and thus the weldment of TMCP steel has softening zone which shows low fracture toughness compared with base metal. Therefore, PHWT of weldment is carried out to improve the fracture toughness in weldment of TMCP steel which has softening zone. In this study, the effects of PWHT on the weldment of AH36-TMCP steel are investigated by the small punch (SP) test. From the several results such as SP energy and displacement at room temperature, the behavior of transition curves, the fracture strength at -196$^{\circ}C$, distribution of (DBTT)sp and (DBTT)sp, the PWHT condition of A.C. after 85$0^{\circ}C$-1 sec W.C. was suitable condition for recovering a softening zone of HAZ as welded.

  • PDF

Charpy 충격시험편을 이용한 로터강의 인성 열화도 평가

  • 남승훈;김시천;이해무
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.728-731
    • /
    • 1995
  • Miniaturzed specimen technology permits mechanical bechanical behavior to be determined using a minimum volume of material. because it is almost impossible to sample the conventional specimen for the fracture toughness test without damage to the rotor. In addition, it is different to collect a large amount of actual turbine rotor steels. Hence seven kinds of specimen with different degradation levels were prepared by isothermal aging heat treatment at 630 .deg. C. Test material was 1Cr-1Mo-0.25V steel which was widely used for turbine rotor material. The relation between fracture toughness and DBTT was investigated The characteristics of minaturized impact speciments technique was discussed. Finally, the estimating method of fracture toughness using a single impact specimen was introduced.

  • PDF

열간 금형재의 기계적 성질과 주조금형 피로해석모델 (Mechanical Properties of Hot Working Die Steel and Fatigue Analysis Model of Casting Mold)

  • 여은구;황성식;이용신;곽시영;김정태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.405-408
    • /
    • 2003
  • Generally, the life of casting mold is limited by fatigue fracture or dimensional inaccuracy originated from wear in high temperature. Although recent research of metallic materials in high temperature fatigue have been much accomplished, many studies on brittle material as a die steel in high temperature fatigue does not have been reported. Especially, the study on the fatigue behavior over the transformation temperature is not studied sufficiently because of its difficult analysis and experiment. Therefore, reliable results of brittle material in high temperature fatigue behavior are needed. In this paper, stress-strain curves and stress-life curves in die STD61 steel are carefully examined between room temperature and 90$0^{\circ}C$, as the basic experimental data are used to predict from fatigue life of casting mold.

  • PDF

소형 샤르피 충격시험편에서의 파괴응력에 관한 연구 (A Study on the Fracture Stress in Miniaturized Charpy Impact Specimens)

  • 남승훈;김엄기;이대열;김시천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.132-137
    • /
    • 2001
  • Miniaturized specimen technology is useful to characterize the mechanical behavior using a minimum volume of material, because it is almost impossible to sample the conventional specimen for the fracture toughness test without damage to equipment. Test material was 1Cr-1Mo-0.25V steel which was widely used for turbine rotor material. Two kinds of miniaturized impact specimens were prepared, i.e., miniaturized specimen with side groove and without side groove. The correlation between ductile brittle transition temperature(DBTT) of full size impact specimen and that of miniaturized impact specimen was made. The characteristics of miniaturized impact specimens technique as well as fracture stress were discussed. Finally, we concluded that the characteristics of fracture stress change on aging time were similar to that of DBTT.

  • PDF

고온환경하에서 지르코니아/니켈 소결재의 기계적 특성평가 (Evaluation of Mechanical Properties of Zirconia/Ni Sintering Materials at High Temperature)

  • 김연직
    • 한국재료학회지
    • /
    • 제6권9호
    • /
    • pp.972-978
    • /
    • 1996
  • 본 논문에서는 1673K에서 소결한 PSZ/Ni 복합재에 대한 종 탄성계수, 파괴강도, 파괴에너지 등의 기계적 특성을 평가하기 위해, 개량형 소형펀치시험을 행한 결과에 대해 논의한다. 또한 파면관찰과 AE법을 통해 이들 재료의 고온환경에서의 미시파괴과정도 조사하였다. 시험온도는 293K, 1073K, 1273K, 1473K의 4종류로 하였으며, PSZ/Ni 복합재료의 체적 조성비도 80/20, 60/40, 40/60, 20/80의 4종류이다. 이들 실험결과로부터, 1073K이상의 고온에서 Ni 함량이 60%인 PSZ/Ni 복합재가 파괴강도 및 파괴에너지가 가장 우수한 것을 알았다. 파면관찰에 의하면 이 재료의 조성비에서 파고거동이 취성으로부터 연성으로 천이하는 것을 확인할 수 있었다.

  • PDF

고 Mn강의 용접 열영향부에서의 기계적 특성평가

  • 유재홍;김상훈;박영환;이창희
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.25-25
    • /
    • 2010
  • 8 wt.% 망간 (Mn) 이 함유된 마르텐사이트계 고 Mn강은 고강도용 강재로 산업현장에 적용될 수 있는 유용한 재료이다. 그러나, 다량의 망간의 함유로 인한 용접성 저하로 상용화를 위해서는 용접성 평가가 필요하다. 본 연구에서는 gleeble simulator 를 통해 열영향부를 재현한 후 local brittle zones(LBZs) 을 규명하였다. 모재는 Electron Probe Micro Analyzer (EPMA) 및 X-Ray Diffractometer(XRD) 로 분석결과 다량의 Mn 함유로 인해 lath마르텐사이트 미세조직과 소량의 잔류 오스테나이트로 구성되어 있었다. 용접부에서 모재까지 Vickers 경도계로 경도 분포를 측정한 결과 coarse-grained heat affected zone (CGHAZ) 에서 fine-grained heat affected zone (FGHAZ) 까지 경도 증가 후 subcritical heat affected zone (SCHAZ) 까지 급격한 경도 감소 거동을 보였다. 열영향부의 미세조직은 투과전자현미경 (TEM)으로 분석하였다. 연성취성천이온도 (DBTT) 측정을 위해 온도 구간을 상온, $0^{\circ}C$, $-20^{\circ}C$, $-40^{\circ}C$, $-60^{\circ}C$, $-80^{\circ}C$으로 설정하여 charpy impact test를 시행하였다. 그 결과 coarse-grained heat affected zone(CGHAZ) 에서 조대한 결정립으로 인해 낮은 충격값을 보였다.

  • PDF

아공석강의 충격인성 및 연성-취성 천이온도에 미치는 펄라이트 층상간격의 영향 (Effect of Pearlite Interlamellar Spacing on Impact Toughness and Ductile-Brittle Transition Temperature of Hypoeutectoid Steels)

  • 이상인;강준영;황병철
    • 한국재료학회지
    • /
    • 제25권8호
    • /
    • pp.417-422
    • /
    • 2015
  • In this study, low-carbon hypoeutectoid steels with different ferrite-pearlite microstructures were fabricated by varying transformation temperature. The microstructural factors such as pearlite fraction and interlamellar spacing, and cementite thickness were quantitatively measured and then Charpy impact tests conducted on the specimens in order to investigate the correlation of the microstructural factors with impact toughness and ductile-brittle transition temperature. The microstructural analysis results showed that the pearlite interlamellar spacing and cementite thickness decreases while the pearlite fraction increases as the transformation temperature decreases. Although the specimens with higher pearlite fractions have low absorbed energy, on the other hand, the absorbed energy is higher in room temperature than in low temperature. The upper-shelf energy slightly increases with decreasing the pearlite interlamellar spacing. However, the ductile-brittle transition temperature is hardly affected by the pearlite interlamellar spacing because there is an optimum interlamellar spacing dependent on lamellar ferrite and cementite thickness and because the increase in pearlite fraction and the decrease in interlamellar spacing with decreasing transformation temperature have a contradictory role on absorbed energy.