• Title/Summary/Keyword: 연산 효율

Search Result 2,610, Processing Time 0.027 seconds

Fast Mode Decision using Block Size Activity for H.264/AVC (블록 크기 활동도를 이용한 H.264/AVC 부호화 고속 모드 결정)

  • Jung, Bong-Soo;Jeon, Byeung-Woo;Choi, Kwang-Pyo;Oh, Yun-Je
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.1-11
    • /
    • 2007
  • H.264/AVC uses variable block sizes to achieve significant coding gain. It has 7 different coding modes having different motion compensation block sizes in Inter slice, and 2 different intra prediction modes in Intra slice. This fine-tuned new coding feature has achieved far more significant coding gain compared with previous video coding standards. However, extremely high computational complexity is required when rate-distortion optimization (RDO) algorithm is used. This computational complexity is a major problem in implementing real-time H.264/AVC encoder on computationally constrained devices. Therefore, there is a clear need for complexity reduction algorithm of H.264/AVC such as fast mode decision. In this paper, we propose a fast mode decision with early $P8\times8$ mode rejection based on block size activity using large block history map (LBHM). Simulation results show that without any meaningful degradation, the proposed method reduces whole encoding time on average by 53%. Also the hybrid usage of the proposed method and the early SKIP mode decision in H.264/AVC reference model reduces whole encoding time by 63% on average.

A Hierarchical Group-Based CAVLC Decoder (계층적 그룹 기반의 CAVLC 복호기)

  • Ham, Dong-Hyeon;Lee, Hyoung-Pyo;Lee, Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.2
    • /
    • pp.26-32
    • /
    • 2008
  • Video compression schemes have been developed and used for many years. Currently, H.264/AVC is the most efficient video coding standard. The H.264/AVC baseline profile adopts CAVLC(Context-Adaptive Variable Length Coding) method as an entropy coding method. CAVLC gives better performance in compression ratios than conventional VLC(Variable Length Coding). However, because CAVLC decoder uses a lot of VLC tables, the CAVLC decoder requires a lot of area in terms of hardware. Conversely, since it must look up the VLC tables, it gives a worse performance in terms of software. In this paper, we propose a new hierarchical grouping method for the VLC tables. We can obtain an index of codes in the reconstructed VLC tables by simple arithmetic operations. In this method, the VLC tables are accessed just once in decoding a symbol. We modeled the proposed algorithm in C language, compiled under ARM ADS1.2 and simulated it with Armulator. Experimental results show that the proposed algorithm reduces execution time by about 80% and 15% compared with the H.264/AVC reference program JM(Joint Model) 10.2 and the arithmetic operation algorithm which is recently proposed, respectively.

Efficient and Privacy-Preserving Near-Duplicate Detection in Cloud Computing (클라우드 환경에서 검색 효율성 개선과 프라이버시를 보장하는 유사 중복 검출 기법)

  • Hahn, Changhee;Shin, Hyung June;Hur, Junbeom
    • Journal of KIISE
    • /
    • v.44 no.10
    • /
    • pp.1112-1123
    • /
    • 2017
  • As content providers further offload content-centric services to the cloud, data retrieval over the cloud typically results in many redundant items because there is a prevalent near-duplication of content on the Internet. Simply fetching all data from the cloud severely degrades efficiency in terms of resource utilization and bandwidth, and data can be encrypted by multiple content providers under different keys to preserve privacy. Thus, locating near-duplicate data in a privacy-preserving way is highly dependent on the ability to deduplicate redundant search results and returns best matches without decrypting data. To this end, we propose an efficient near-duplicate detection scheme for encrypted data in the cloud. Our scheme has the following benefits. First, a single query is enough to locate near-duplicate data even if they are encrypted under different keys of multiple content providers. Second, storage, computation and communication costs are alleviated compared to existing schemes, while achieving the same level of search accuracy. Third, scalability is significantly improved as a result of a novel and efficient two-round detection to locate near-duplicate candidates over large quantities of data in the cloud. An experimental analysis with real-world data demonstrates the applicability of the proposed scheme to a practical cloud system. Last, the proposed scheme is an average of 70.6% faster than an existing scheme.

An Implementation Method of HB-Family Light-weight Authentication for Device Authentication between ECU (ECU간 기기인증을 위한 HB-Family 경량인증기법의 적용 방법)

  • Kim, Tae Su;Kim, Hyoseung;Woo, Samuel;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.4
    • /
    • pp.593-607
    • /
    • 2013
  • The In-Vehicle-Networking(IVN) of modern cars is constituted by an small electronic control device called ECU. In the past, there was no way to be able to access the IVN of a driving car. so IVN has been recognized as a closed environment so there is no need to exist authentication protocol between devices which are to configure the internal network and to communicate with other devices. However, constant improvements made it possible to access the IVN in many different ways as the communication technology evolves. This possibility created a need for device authentication in IVN. HB-Family are representative authentication schemes in RFID environment which has similar restrictions to IVN. In this paper, we propose an implementation method of HB-Family for device authentication between ECU considering ECU has low computing power and the message field of CAN protocol has restricted size of 8 bytes. In order to evaluate the efficiency and availability of the authentication schemes adopted our method, we have evaluated the performance based on DSP-28335 device. Further, it was possible to improve the efficiency rate of at lest 10%, up to 36%, and we then analyze this result in various aspects of the IVN.

Online Reorganization of B+ tree in a Scalable and Highly Available Database Cluster (확장 가능한 고가용 데이터베이스 클러스터에서 B+ 트리 색인의 온-라인 재조직 기법)

  • Lee, Chung-Ho;Bae, Hea-Young
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.801-812
    • /
    • 2002
  • On-line reorganization in a shared nothing database cluster is crucial to the performance of the database system in a dynamic environment like WWW where the number of users grows rapidly and changing access patterns may exhibit high skew. In the existing method of on-line reorganization have a drawback that needs excessive data migrations in case more than two nodes within a cluster have overload at the same time. In this paper, we propose an advanced B$^{+}$ tree based on-line reorganization method that solves data skew on multi-nodes. Our method facilitates fast and efficient data migration by including spare nodes that are added to cluster through on-line scaling. Also we apply CSB$^{+}$ tree (Cache Sensitive B$^{+}$ tree) to our method instead of B$^{+}$ tree for fast select and update queries. We conducted performance study and implemented the method on Ultra Fault-Tolerant Database Cluster developed for high scalability and availability. Empirical results demonstrate that our proposed method is indeed effective and fast than the existing method. method.

SPQUSAR : A Large-Scale Qualitative Spatial Reasoner Using Apache Spark (SPQUSAR : Apache Spark를 이용한 대용량의 정성적 공간 추론기)

  • Kim, Jongwhan;Kim, Jonghoon;Kim, Incheol
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.12
    • /
    • pp.774-779
    • /
    • 2015
  • In this paper, we present the design and implementation of a large-scale qualitative spatial reasoner using Apache Spark, an in-memory high speed cluster computing environment, which is effective for sequencing and iterating component reasoning jobs. The proposed reasoner can not only check the integrity of a large-scale spatial knowledge base representing topological and directional relationships between spatial objects, but also expand the given knowledge base by deriving new facts in highly efficient ways. In general, qualitative reasoning on topological and directional relationships between spatial objects includes a number of composition operations on every possible pair of disjunctive relations. The proposed reasoner enhances computational efficiency by determining the minimal set of disjunctive relations for spatial reasoning and then reducing the size of the composition table to include only that set. Additionally, in order to improve performance, the proposed reasoner is designed to minimize disk I/Os during distributed reasoning jobs, which are performed on a Hadoop cluster system. In experiments with both artificial and real spatial knowledge bases, the proposed Spark-based spatial reasoner showed higher performance than the existing MapReduce-based one.

Efficient Rotation-Invariant Boundary Image Matching Using the Envelope-based Lower Bound (엔빌로프 기반 하한을 사용한 효율적인 회전-불변 윤곽선 이미지 매칭)

  • Kim, Sang-Pil;Moon, Yang-Sae;Hong, Sun-Kyong
    • The KIPS Transactions:PartD
    • /
    • v.18D no.1
    • /
    • pp.9-22
    • /
    • 2011
  • In this paper we present an efficient solution to rotation?invariant boundary image matching. Computing the rotation-invariant distance between image time-series is a time-consuming process since it requires a lot of Euclidean distance computations for all possible rotations. In this paper we propose a novel solution that significantly reduces the number of distance computations using the envelope-based lower bound. To this end, we first present how to construct a single envelope from a query sequence and how to obtain a lower bound of the rotation-invariant distance using the envelope. We then show that the single envelope-based lower bound can reduce a number of distance computations. This approach, however, may cause bad performance since it may incur a larger lower bound by considering all possible rotated sequences in a single envelope. To solve this problem, we present a concept of rotation interval, and using the rotation interval we generalize the envelope-based lower bound by exploiting multiple envelopes rather than a single envelope. We also propose equi-width and envelope minimization divisions as the method of determining rotation intervals in the multiple envelope approach. Experimental results show that our envelope-based solutions outperform existing solutions by one or two orders of magnitude.

An Improved Multi-Keyword Search Protocol to Protect the Privacy of Outsourced Cloud Data (아웃소싱된 클라우드 데이터의 프라이버시를 보호하기 위한 멀티 키워드 검색 프로토콜의 개선)

  • Kim, Tae-Yeon;Cho, Ki-Hwan;Lee, Young-Lok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.10
    • /
    • pp.429-436
    • /
    • 2017
  • There is a growing tendency to outsource sensitive or important data in cloud computing recently. However, it is very important to protect the privacy of outsourced data. So far, a variety of secure and efficient multi-keyword search schemes have been proposed in cloud computing environment composed of a single data owner and multiple data users. Zhang et. al recently proposed a search protocol based on multi-keyword in cloud computing composed of multiple data owners and data users but their protocol has two problems. One is that the cloud server can illegally infer the relevance between data files by going through the keyword index and user's trapdoor, and the other is that the response for the user's request is delayed because the cloud server has to execute complicated operations as many times as the size of the keyword index. In this paper, we propose an improved multi-keyword based search protocol which protects the privacy of outsourced data under the assumption that the cloud server is completely unreliable. And our experiments show that the proposed protocol is more secure in terms of relevance inference between the data files and has higher efficiency in terms of processing time than Zhang's one.

Design and Performance Analysis of a Parallel Optimal Branch-and-Bound Algorithm for MIN-based Multiprocessors (MIN-based 다중 처리 시스템을 위한 효율적인 병렬 Branch-and-Bound 알고리즘 설계 및 성능 분석)

  • Yang, Myung-Kook
    • Journal of IKEEE
    • /
    • v.1 no.1 s.1
    • /
    • pp.31-46
    • /
    • 1997
  • In this paper, a parallel Optimal Best-First search Branch-and-Bound(B&B) algorithm(pobs) is designed and evaluated for MIN-based multiprocessor systems. The proposed algorithm decomposes a problem into G subproblems, where each subproblem is processed on a group of P processors. Each processor group uses tile sub-Global Best-First search technique to find a local solution. The local solutions are broadcasted through the network to compute the global solution. This broadcast provides not only the comparison of G local solutions but also the load balancing among the processor groups. A performance analysis is then conducted to estimate the speed-up of the proposed parallel B&B algorithm. The analytical model is developed based on the probabilistic properties of the B&B algorithm. It considers both the computation time and communication overheads to evaluate the realistic performance of the algorithm under the parallel processing environment. In order to validate the proposed evaluation model, the simulation of the parallel B&B algorithm on a MIN-based system is carried out at the same time. The results from both analysis and simulation match closely. It is also shown that the proposed Optimal Best-First search B&B algorithm performs better than other reported schemes with its various advantageous features such as: less subproblem evaluations, prefer load balancing, and limited scope of remote communication.

  • PDF

Adaptive Range Aggregation Index Method for Efficient Spatial Range Query in Ubiquitous Sensor Networks (USN환경에서 효율적인 공간영역질의를 위한 적응형 영역 집계 인덱스 기법)

  • Li, Yan;Eo, Sang-Hun;Cho, Sook-Kyoung;Lee, Soon-Jo;Bae, Hae-Yeong
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.2
    • /
    • pp.93-107
    • /
    • 2007
  • In this paper, an adaptive range aggregation spatial index method is proposed for spatial range query in ubiquitous sensor networks. As the ubiquitous sensor networks are the new information-oriented paradigm, many energy efficient spatial range query methods in ubiquitous sensor networks environment are studied vigorously. In sensor networks, users can monitor environment scalar data such as temperature and humidity during user defined time and spatial ranges. In order to execute spatial range query efficiently, rectangle based index methods are proposed, such as SPIX. But they define the return path as the opposite of its query transmit path. However, the sensor nodes in queried ranges are closed to each other, they can't aggregate the sensed value in a queried range because their query transmission paths are different. As a result, the previous methods waste energy unnecessarily to aggregate sensing data out of the queried range. In this paper, an adaptive aggregation index method is proposed that can aggregate values in a user defined range adaptively by using its neighbor information. It is shown that sensor power is saved efficiently by using the proposed method over the performance evaluation.

  • PDF