• Title/Summary/Keyword: 연산 순서

Search Result 156, Processing Time 0.025 seconds

Lazy Bulk Insertion Method of Moving objects on LUR-tree (LUR-tree에서 이동체의 지연 다량 삽입 기법)

  • Kim Jung-Hyun;Jang Yong-Il;Bae Hae-Young;Park Soon-Young;Oh Young-Hwan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.70-72
    • /
    • 2005
  • 지금까지의 이동체 인덱스에 대한 연구는 주로 인덱스 구성 후에 발생하는 질의 처리 효율성에 두고 있다. 다수의 이동체 인덱스에서 이동체 데이터의 갱신 연산에 의한 인덱스 재구성에 대한 디스크 접근 오버헤드를 고려하지 않았다. 이동체 데이터 처리를 위한 대표적 인덱스 구조인 R-tree는 이동체에 대한 갱신 연산 비용이 많이 든다. 이런 R-tree의 단점을 보완하기 위해 이동체가 가지는 MBR값이 동적으로 변화하는 환경에 맞추어 R트리의 갱신 비용을 절감하여 처리하는 LUR-tree가 제안되었다. 본 논문에서는 마른 데이터 생성 속도에 적합하도록 디스크 접근 오버헤드를 고려해서 LUR-tree를 관리할 수 있는 현재 인덱스에 대한 다량 삽입 기법을 제안한다. 이 기법에서는 다차원 인덱스 구조에서의 다량 삽입 기법을 위한 간단한 버퍼링 기법을 사용한다. LUR-tree의 단말 노드 정보를 관리하는 보조 인덱스를 추가하여 갱신 연산에 따른 노드의 분할과 합병을 예측한다. 예측된 결과를 바탕으로 노드의 변화를 최소화하는 방향으로 데이터의 갱신 순서를 정하여 데이터 갱신에 따른 노드의 분할과 합병을 최소화한다. 실험을 통해 제안한 기법을 이용한 다량 삽입이 기존의 다량 삽입 기법들과 비교해 인덱스의 갱신 비용을 감소시키는 것을 알 수 있다.

  • PDF

A Concurrency Control Technique Using Optimistic Atomic Broadcast In Replicated Database Systems (중복 데이터베이스 시스템에서 낙관적인 원자적 방송을 이용한 동시성제어 기법)

  • Choe, Hui-Yeong;Hwang, Bu-Hyeon
    • The KIPS Transactions:PartD
    • /
    • v.8D no.5
    • /
    • pp.543-552
    • /
    • 2001
  • To process transactions in fully replicated database, an atomic broadcast is mainly used. In this case of using atomic broadcast, transactions can be delayed because of the coordinating step among servers before processing the transaction. In this paper, we propose an algorithm to resolve the problem of transaction delay. In the proposed algorithm, the transactions are processed by using the optimistic method. The operations of a transaction are performed in the site that it is submitted and its write operations its updates atomically in all replicated sites. Since the serializability of transaction is ensured by checking the sequence number of transactions in the completion-inspection step.

  • PDF

A Fast Encoding Algorithm for Image Vector Quantization Based on Prior Test of Multiple Features (복수 특징의 사전 검사에 의한 영상 벡터양자화의 고속 부호화 기법)

  • Ryu Chul-hyung;Ra Sung-woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1231-1238
    • /
    • 2005
  • This paper presents a new fast encoding algorithm for image vector quantization that incorporates the partial distances of multiple features with a multidimensional look-up table (LUT). Although the methods which were proposed earlier use the multiple features, they handles the multiple features step by step in terms of searching order and calculating process. On the other hand, the proposed algorithm utilizes these features simultaneously with the LUT. This paper completely describes how to build the LUT with considering the boundary effect for feasible memory cost and how to terminate the current search by utilizing partial distances of the LUT Simulation results confirm the effectiveness of the proposed algorithm. When the codebook size is 256, the computational complexity of the proposed algorithm can be reduced by up to the $70\%$ of the operations required by the recently proposed alternatives such as the ordered Hadamard transform partial distance search (OHTPDS), the modified $L_2-norm$ pyramid ($M-L_2NP$), etc. With feasible preprocessing time and memory cost, the proposed algorithm reduces the computational complexity to below the $2.2\%$ of those required for the exhaustive full search (EFS) algorithm while preserving the same encoding quality as that of the EFS algorithm.

Time-optimized Color Conversion based on Multi-mode Chrominance Reconstruction and Operation Rearrangement for JPEG Image Decoding (JPEG 영상 복원을 위한 다중 모드 채도 복원과 연산 재배열 기반의 시간 최적화된 컬러 변환)

  • Kim, Young-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.135-143
    • /
    • 2009
  • Recently, in the mobile device, the increase of the need for encoding and decoding of high-resolution images requires an efficient implementation of the image codec. This paper proposes a time-optimized color conversion method for the JPEG decoder, which reduces the number of calculations in the color conversion by the rearrangement of arithmetic operations being possible due to the linearity of the IDCT and the color conversion matrices and brings down the time complexity of the color conversion itself by the integer mapping replacing floating-point operations to the optimal fixed-point shift and addition operations, eventually reducing the time complexity of the JPEG decoder. And the proposed method compensates a decline of image quality incurred by the quantification error of the operation arrangement and the integer mapping by using the multi-mode chrominance reconstruction. The performance evaluation performed on the development platform of embedded systems showed that, compared to previous color conversion methods, the proposed method greatly reduces the image decoding time, minimizing the distortion of decoded images.

An Efficient Spatial Join Method Using DOT Index (DOT 색인을 이용한 효율적인 공간 조인 기법)

  • Back, Hyun;Yoon, Jee-Hee;Won, Jung-Im;Park, Sang-Hyun
    • Journal of KIISE:Databases
    • /
    • v.34 no.5
    • /
    • pp.420-436
    • /
    • 2007
  • The choice of an effective indexing method is crucial to guarantee the performance of the spatial join operator which is heavily used in geographical information systems. The $R^*$-tree based method is renowned as one of the most representative indexing methods. In this paper, we propose an efficient spatial join technique based on the DOT(Double Transformation) index, and compare it with the spatial Join technique based on the $R^*$-tree index. The DOT index transforms the MBR of an spatial object into a single numeric value using a space filling curve, and builds the $B^+$-tree from a set of numeric values transformed as such. The DOT index is possible to be employed as a primary index for spatial objects. The proposed spatial join technique exploits the regularities in the moving patterns of space filling curves to divide a query region into a set of maximal sub-regions within which space filling curves traverse without interruption. Such division reduces the number of spatial transformations required to perform the spatial join and thus improves the performance of join processing. The experiments with the data sets of various distributions and sizes revealed that the proposed join technique is up to three times faster than the spatial join method based on the $R^*$-tree index.

Hilbert Cube for Spatio-Temporal Data Warehouses (시공간 데이타웨어하우스를 위한 힐버트큐브)

  • 최원익;이석호
    • Journal of KIISE:Databases
    • /
    • v.30 no.5
    • /
    • pp.451-463
    • /
    • 2003
  • Recently, there have been various research efforts to develop strategies for accelerating OLAP operations on huge amounts of spatio-temporal data. Most of the work is based on multi-tree structures which consist of a single R-tree variant for spatial dimension and numerous B-trees for temporal dimension. The multi~tree based frameworks, however, are hardly applicable to spatio-temporal OLAP in practice, due mainly to high management cost and low query efficiency. To overcome the limitations of such multi-tree based frameworks, we propose a new approach called Hilbert Cube(H-Cube), which employs fractals in order to impose a total-order on cells. In addition, the H-Cube takes advantage of the traditional Prefix-sum approach to improve Query efficiency significantly. The H-Cube partitions an embedding space into a set of cells which are clustered on disk by Hilbert ordering, and then composes a cube by arranging the grid cells in a chronological order. The H-Cube refines cells adaptively to handle regional data skew, which may change its locations over time. The H-Cube is an adaptive, total-ordered and prefix-summed cube for spatio-temporal data warehouses. Our approach focuses on indexing dynamic point objects in static spatial dimensions. Through the extensive performance studies, we observed that The H-Cube consumed at most 20% of the space required by multi-tree based frameworks, and achieved higher query performance compared with multi-tree structures.

A hybrid genetic algorithm for the optimal transporter management plan in a shipyard

  • Jun-Ho Park;Yung-Keun Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.49-56
    • /
    • 2023
  • In this study, we propose a genetic algorithm (GA) to optimize the allocation and operation order of transporters. The solution in the GA is represented by a set of lists each of which the operation order of the corresponding transporter. In addition, it was implemented in the form of a hybrid genetic algorithm combining effective local search operations for performance improvement. The local search reduces the number of operating transporters by moving blocks from a transporter with a low workload into that with a high workload. To evaluate the effectiveness of the proposed algorithm, it was compared with Multi-Start and a pure genetic algorithm through a simulation environment similar in scale to an actual shipyard. For the largest problem, compared to them, the number of transporters was reduced by 40% and 34%, and the total task time was reduced by 27% and 17%, respectively.

FPGA Design of Open-Loop Frame Prediction Processor for Scalable Video Coding (스케일러블 비디오 코딩을 위한 Open-Loop 프레임 예측 프로세서의 FPGA 설계)

  • Seo Young-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5C
    • /
    • pp.534-539
    • /
    • 2006
  • In this paper, we propose a new frame prediction filtering technique and a hardware(H/W) architecture for scalable video coding. We try to evaluate MCTF(motion compensated temporal filtering) and hierarchical B-picture which are a technique for eliminate correlation between video frames. Since the techniques correspond to non-causal system in time, these have fundamental defects which are long latency time and large size of frame buffer. We propose a new architecture to be efficiently implemented by reconfiguring non-causal system to causal system. We use the property of a repetitive arithmetic and propose a new frame prediction filtering cell(FPFC). By expanding FPFC we reconfigure the whole arithmetic architecture. After the operational sequence of arithmetic is analyzed in detail and the causality is imposed to implement in hardware, the unit cell is optimized. A new FPFC kernel was organized as simple as possible by repeatedly arranging the unit cells and a FPFC processor is realized for scalable video coding.

Lazy Bulk Insertion Method of Moving Objects Using Index Structure Estimation (색인 구조 예측을 통한 이동체의 지연 다량 삽입 기법)

  • Kim, Jeong-Hyun;Park, Sun-Young;Jang, Hyong-Il;Kim, Ho-Suk;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.7 no.3 s.15
    • /
    • pp.55-65
    • /
    • 2005
  • This paper presents a bulk insertion technique for efficiently inserting data items. Traditional moving object database focused on efficient query processing that happens mainly after index building. Traditional index structures rarely considered disk I/O overhead for index rebuilding by inserting data items. This paper, to solve this problem, describes a new bulk insertion technique which efficiently induces the current positions of moving objects and reduces update cost greatly. This technique uses buffering technique for bulk insertion in spatial index structures such as R-tree. To analyze split or merge node, we add a secondary index for information management on leaf node of primary index. And operations are classified to reduce unnecessary insertion and deletion. This technique decides processing order of moving objects, which minimize split and merge cost as a result of update operations. Experimental results show that this technique reduces insertion cost as compared with existing insertion techniques.

  • PDF

Reflections on the Primary School Mathematics Curriculum in the Netherlands - Focused on Number and Operations Strand - (네덜란드의 초등 수학 교육과정에 대한 개관 - 자연수와 연산 영역을 중심으로 -)

  • Chong, Yeong-Ok
    • School Mathematics
    • /
    • v.7 no.4
    • /
    • pp.403-425
    • /
    • 2005
  • The study aims to get real picture of primary mathematics education based on RME in the Netherlands focusing on number and operations strand by reflecting and analyzing the documents in relation to the primary school mathematics curriculum. In order to attain these purposes, the present paper describes the core goals for mathematics education, Dutch Pluspunt textbook series for the primary school, and a learning-teaching trajectory by TAL project which are determinants of the Dutch primary school mathematics curriculum. Under these reflections on the documents, it is analyzed what is the characteristics of number and operations strand in the Nether-lands as follows: counting numbers, contextualization, positioning, structuring, progressive algoritmization based on levels, estimation and insightful use of a calculator. Finally, discussing Points for improving our primary mathematics curriculum and textbook series development are described.

  • PDF