• Title/Summary/Keyword: 연산유체역학

Search Result 20, Processing Time 0.022 seconds

Fast Volume Rendering of VKH dataset using GPU Cluster (GPU 클러스터를 이용한 VKH 데이터의 빠른 볼륨 렌더링)

  • Lee Joong-Youn
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.763-765
    • /
    • 2005
  • 볼륨 렌더링은 3차원이나 그 이상의 차원의 볼륨 데이터에서 의미있는 정보를 추출해 내어 직관적으로 표출하는 가시화 기법을 말하며 의료영상 기상학, 유체역학 등 다양한 분야에서 널리 사용되고 있다. 한편, 최근 PC 하드웨어의 급격한 발전으로 과거에는 슈퍼컴퓨터에서나 가능했던 대용량 볼륨 데이터의 가시화가 일반 PC 환경에서도 가능하게 되었다. PC 그래픽스 하드웨어의 꼭지점 및 픽셀 세이더의 수치 계산에 최적화된 벡터 연산으로 빠른 볼륨 가시화를 가능하게 한 것이다. 그러나 그래픽스 하드웨어의 메모리 용량의 한계로 대용량의 볼륨 데이터를 빠르게 가시화하는 것은 지금까지 어려운 문제로 남아있다. 본 논문에서는 한국과학기술정보연구원에서 제작한 대용량의 인체영상 데이터인 Visible Korean Human 데이터를 여러 개의 그래픽스 하드웨어 메모리에 분산시키고 이를 꼭지점 및 픽셀 쉐이더를 이용하여 빠르게 가시화하여 고해상도의 이미지를 얻고자 하였다.

  • PDF

Visualization of Volume Dataset using GPU Cluster and Tiled Display (GPU 클러스터 및 타일형 디스플레이를 이용한 볼륨 데이터의 고해상도 가시화)

  • Lee, Joong-Youn
    • Annual Conference of KIPS
    • /
    • 2005.11a
    • /
    • pp.1395-1398
    • /
    • 2005
  • 볼륨 렌더링은 3차원이나 그 이상의 차원의 볼륨 데이터에서 의미있는 정보를 추출해 내어 직관적으로 표출하는 가시화 기법을 말하며 의료영상, 기상학, 유체역학 등 다양한 분야에서 널리 사용되고 있다. 한편, 최근 PC 하드웨어의 급격한 발전으로 과거에는 슈퍼컴퓨터에서나 가능했던 대용량 볼륨 데이터의 가시화가 일반 PC 환경에서도 가능하게 되었다. GPU의 꼭지점 및 픽셀 쉐이더의 수치 계산에 최적화된 벡터 연산으로 빠른 볼륨 가시화를 가능하게 한 것이다. 그러나 GPU의 메모리 용량의 한계로 대용량의 볼륨 데이터를 빠르게 가시화하는 것은 지금까지 어려운 문제로 남아있다. 본 논문에서는 GPU의 텍스쳐 메모리 크기보다 큰 볼륨 데이터를 여러 개의 GPU 메모리에 분산시키고 이를 꼭지점 및 픽셀 쉐이더를 이용하여 빠르게 렌더링하여 타일형 디스플레이에서 고해상도로 가시화하는 시스템을 디자인하고 구현하고자 하였다.

  • PDF

Development and Application of Siphon Breaker Simulation Program (사이펀 차단기 시뮬레이션 프로그램의 개발 및 활용)

  • Lee, Kwon-Yeong;Kim, Wan-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.346-353
    • /
    • 2016
  • In the design conditions of some research reactors, the siphon phenomenon can cause continuous efflux of water during pipe rupture. A siphon breaker is a safety device that can prevent water efflux effectively. However, the analysis of the siphon breaking is complicated because many variables must be included in the calculation process. For this reason, a simulation program was developed with a user-friendly GUI to analyze the siphon breaking easily. The program was developed by MFC programming using Visual Studio 2012 in Windows 8. After saving the input parameters from a user, the program proceeds with three steps of calculation using fluid mechanics formulas. Bernoulli's equation is used to calculate the velocity, quantity, water level, undershooting, pressure, loss coefficient, and factors related to the two-phase flow. The Chisholm model is used to predict the results from a real-scale experiment. The simulation results are shown in a graph, through which a user can examine the total breaking situation. It is also possible to save all of the resulting data. The program allows a user to easily confirm the status of the siphon breaking and would be helpful in the design of siphon breakers.

Comparison of Heat Transfer Theory, CFD and Experimental Results in the Design Process of High-Power Fiber Laser Cooling Plate (고출력 광섬유 레이저 냉각판 설계과정에서 나타난 열전달 이론, CFD 및 실험 결과값의 비교)

  • Kim, Taewoo;Lee, Kangin;Jeong, Minwan;Jeong, Yeji;Koh, KwangUoong;Lee, Yongsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.629-637
    • /
    • 2021
  • For the stabilization of laser output power and wavelength of the high power fiber laser, the cooling plate must be properly taken into account. In this study, three analyzing methods which are heat transfer theory, CFD and experiment are used to analyze cooling plate performance by measuring pump Laser Diode(LD) temperature. Under limited operating conditions of a cooling plate, the internal flow of cooling plate is transitional flow so that the internal flow is assumed to be laminar and turbulence flow and conducted theoretical calculation. Through CFD, temperature of pump LD and characteristics of the internal flow were analyzed. By the experiment, temperature of pump LD was measured in real conditions and the performance of the cooling plate was verified. The results of this study indicate that three analyzing methods are practically useful to design the cooling plate for the high power fiber laser or similar things.

CFD Numerical Calcultion for a Cavity Matrix Combustor Applying Biogas (바이오가스 적용 캐비티 매트릭스 연소기 CFD 수치연산)

  • CHUN, YOUNG NAM;AN, JUNE
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.5
    • /
    • pp.598-606
    • /
    • 2022
  • With the advancement of industry, the use of various sustainable energy sources and solutions to problems affecting the environment are being actively requested. From this point of view, it is intended to directly burn unused biogas to use it as energy and to solve environmental problems such as greenhouse gases. In this study, a new type of cavity matrix combustor capable of low-emission complete combustion without complex facilities such as separation or purification of biogas produced in small and medium-sized facilities was proposed, and CFD numerical calculation was performed to understand the performance characteristics of this combustor. The cavity matrix combustor consists of a burner with a rectangular porous microwave receptor at the center inside a 3D cavity that maintains a rectangular parallelepiped shape composed of a porous plate that can store heat in the combustor chamber. As a result of numerical calculation, the biogas supplied to the inlet of the combustor is converted to CO and H2, which are intermediate products, on the surface of the 3D matrix porous burner. And then the optimal combustion process was achieved through complete combustion into CO2 and H2O due to increased combustibility by receiving heat energy from the microwave heating receptor.

A Research about Open Source Distributed Computing System for Realtime CFD Modeling (SU2 with OpenCL and MPI) (실시간 CFD 모델링을 위한 오픈소스 분산 컴퓨팅 기술 연구)

  • Lee, Jun-Yeob;Oh, Jong-woo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.171-171
    • /
    • 2017
  • 전산유체역학(CFD: Computational Fluid Dynamics)를 이용한 스마트팜 환경 내부의 정밀 제어 연구가 진행 중이다. 시계열 데이터의 난해한 동적 해석을 극복하기위해, 비선형 모델링 기법의 일종인 인공신경망을 이용하는 방안을 고려하였다. 선행 연구를 통하여 환경 데이터의 비선형 모델링을 위한 Tensorflow활용 방법이 하드웨어 가속 기능을 바탕으로 월등한 성능을 보임을 확인하였다. 그럼에도 오프라인 일괄(Offline batch)처리 방식의 한계가 있는 인공신경망 모델링 기법과 현장 보급이 불가능한 고성능 하드웨어 연산 장치에 대한 대안 마련이 필요하다고 판단되었다. CFD 해석을 위한 Solver로 SU2(http://su2.stanford.edu)를 이용하였다. 운영 체제 및 컴파일러는 1) Mac OS X Sierra 10.12.2 Apple LLVM version 8.0.0 (clang-800.0.38), 2) Windows 10 x64: Intel C++ Compiler version 16.0, update 2, 3) Linux (Ubuntu 16.04 x64): g++ 5.4.0, 4) Clustered Linux (Ubuntu 16.04 x32): MPICC 3.3.a2를 선정하였다. 4번째 개발환경인 병렬 시스템의 경우 하드웨어 가속는 OpenCL(https://www.khronos.org/opencl/) 엔진을 이용하고 저전력 ARM 프로세서의 일종인 옥타코어 Samsung Exynos5422 칩을 장착한 ODROID-XU4(Hardkernel, AnYang, Korea) SBC(Single Board Computer)를 32식 병렬 구성하였다. 분산 컴퓨팅을 위한 환경은 Gbit 로컬 네트워크 기반 NFS(Network File System)과 MPICH(http://www.mpich.org/)로 구성하였다. 공간 분해능을 계측 주기보다 작게 분할할 경우 발생하는 미지의 바운더리 정보를 정의하기 위하여 3차원 Kriging Spatial Interpolation Method를 실험적으로 적용하였다. 한편 병렬 시스템 구성이 불가능한 1,2,3번 환경의 경우 내부적으로 이미 존재하는 멀티코어를 활용하고자 OpenMP(http://www.openmp.org/) 라이브러리를 활용하였다. 64비트 병렬 8코어로 동작하는 1,2,3번 운영환경의 경우 32비트 병렬 128코어로 동작하는 환경에 비하여 근소하게 2배 내외로 연산 속도가 빨랐다. 실시간 CFD 수행을 위한 분산 컴퓨팅 기술이 프로세서의 속도 및 운영체제의 정보 분배 능력에 따라 결정된다고 판단할 수 있었다. 이를 검증하기 위하여 4번 개발환경에서 운영체제를 64비트로 개선하여 5번째 환경을 구성하여 검증하였다. 상반되는 결과로 64비트 72코어로 동작하는 분산 컴퓨팅 환경에서 단일 프로세서 기반 멀티 코어(1,2,3번) 환경보다 보다 2.5배 내외 연산속도 향상이 있었다. ARM 프로세서용 64비트 운영체제의 완성도가 낮은 시점에서 추후 성공적인 실시간 CFD 모델링을 위한 지속적인 검토가 필요하다.

  • PDF

CUDA-based Parallel Bi-Conjugate Gradient Matrix Solver for BioFET Simulation (BioFET 시뮬레이션을 위한 CUDA 기반 병렬 Bi-CG 행렬 해법)

  • Park, Tae-Jung;Woo, Jun-Myung;Kim, Chang-Hun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.1
    • /
    • pp.90-100
    • /
    • 2011
  • We present a parallel bi-conjugate gradient (Bi-CG) matrix solver for large scale Bio-FET simulations based on recent graphics processing units (GPUs) which can realize a large-scale parallel processing with very low cost. The proposed method is focused on solving the Poisson equation in a parallel way, which requires massive computational resources in not only semiconductor simulation, but also other various fields including computational fluid dynamics and heat transfer simulations. As a result, our solver is around 30 times faster than those with traditional methods based on single core CPU systems in solving the Possion equation in a 3D FDM (Finite Difference Method) scheme. The proposed method is implemented and tested based on NVIDIA's CUDA (Compute Unified Device Architecture) environment which enables general purpose parallel processing in GPUs. Unlike other similar GPU-based approaches which apply usually 32-bit single-precision floating point arithmetics, we use 64-bit double-precision operations for better convergence. Applications on the CUDA platform are rather easy to implement but very hard to get optimized performances. In this regard, we also discuss the optimization strategy of the proposed method.

Development of meshfree particle Methods (무요소 계산법의 발전과 전개)

  • Lee, Jin-Ho
    • Journal for History of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.49-66
    • /
    • 2005
  • Finite element Methods(FEM) have been the primary computational methodologies in science and engineering computations for more than half centuries. One of the main limitations of the finite element approximations is that they need mesh which is an artificial constraint, and they need remeshing to solve in some special problems. The advantages in meshfree Methods is to develop meshfree interpolant schemes that only depends on particles, so they relieve the burden of remeshing and successive mesh generation. In this paper we describe the development of meshfree particle Methods and introduce the numerical schemes for Smoothed Particle hydrodynamics, meshfree Galerkin Methods and meshfree point collocation mehtods. We discusse the advantages and the shortcomings of these Methods, also we verify the applicability and efficiency of Meshfree Particle Methods.

  • PDF

Thermal-Hydraulic Research Review and Cooperation Outcome for Light Water Reactor Fuel (경수로핵연료 열수력 연구개발 분석 및 연산학 협력 성과)

  • In, Wang Kee;Shin, Chang Hwan;Lee, Chi Young;Lee, Chan;Chun, Tae Hyun;Oh, Dong Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.815-824
    • /
    • 2016
  • The fuel assembly for pressurized water reactor (PWR) consists of fuel rod bundle, spacer grid and bottom/top end fittings. The cooling water in high pressure and temperature is introduced in lower plenum of reactor core and directed to upper plenum through the subchannel which is formed between the fuel rods. The main thermal-hydraulic performance parameters for the PWR fuel are pressure drop and critical heat flux in normal operating condition, and quenching time in accident condition. The Korea Atomic Energy Research Institute (KAERI) has been developing an advanced PWR fuel, dual-cooled annular fuel and accident tolerant fuel for the enhancement of fuel performance and the localization. For the key thermal-hydraulic technology development of PWR fuel, the KAERI LWR fuel team has conducted the experiments for pressure drop, turbulent flow mixing and heat transfer, critical heat flux(CHF) and quenching. The computational fluid dynamics (CFD) analysis was also performed to predict flow and heat transfer in fuel assembly including the spent fuel assembly in dry cask for interim repository. In addition, the research cooperation with university and nuclear fuel company was also carried out to develop a basic thermal-hydraulic technology and the commercialization.

Flow Noise Analysis of Ship Pipes using Lattice Boltzmann Method (격자볼츠만기법을 이용한 선박 파이프내 유동소음해석)

  • Beom-Jin Joe;Suk-Yoon Hong;Jee-Hun Song
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.512-519
    • /
    • 2023
  • Noise pollution poses significant challenges to human well-being and marine ecosystems. It is primarily caused by the flow around ships and marine installations, emphasizing the need for accurate noise evaluation of flow noise to ensure environmental safety. Existing flow noise analysis methods for underwater environments typically use a hybrid method combining computational fluid dynamics and Ffowcs Williams-Hawkings acoustic analogy. However, this approach has limitations, neglecting near-field effects such as reflection, scattering, and diffraction of sound waves. In this study, an alternative using direct method flow noise analysis via the lattice Boltzmann method (LBM) is incorporated. The LBM provides a more accurate representation of the underwater structural boundaries and acoustic wave effects. Despite challenges in underwater environments due to numerical instabilities, a novel DM-TS LBM collision operator has been developed for stable implementations for hydroacoustic applications. This expands the LBM's applicability to underwater structures. Validation through flow noise analysis in pipe orifice demonstrates the feasibility of near-field analysis, with experimental comparisons confirming the method's reliability in identifying main pressure peaks from flow noise. This supports the viability of near-field flow noise analysis using the LBM.