• Title/Summary/Keyword: 연삭특성

Search Result 242, Processing Time 0.034 seconds

The Grinding Machining Characteristics of $ZrO_2$ Ceramics Ferrule in the Chucking Alignment Error (척킹 평형 정렬 오차에 따른 지르코니아 세라믹스 페룰의 연삭 가공 특성)

  • Lee S.W.;Kim G.H.;Choi Y.J.;Choi H.Z.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.19-22
    • /
    • 2005
  • As the optical communication industry is developed, the demand of optical communication part is increasing. $ZrO_2$ ceramic ferrule is very important part which can determines the transmission efficiency and information quality to connect the optical fibers. In general $ZrO_2$ ceramic ferrule is manufactured by grinding process because the demands precision is very high. And the co-axle grinding process of $ZrO_2$ ceramic ferrule is to make its concentricity all of uniform before centerless grinding. When co-axle grinding of ferrule supported by two pin, pin chucking alignment accuracy is very important. This paper deals with the analysis of the chucking alignment experiment with parallel error on the micro feeding equipment. Thus, if possible be finding highly good the chucking alignment of two pin.

  • PDF

A Study on the Ultrasonic Machining Characteristics of Alumina Ceramics (알루미나 세라믹의 초음파가공 특성 연구)

  • Kang, Ik-Soo;Kang, Myung-Chang;Kim, Jeong-Suk;Kim, Kwang-Ho;Seo, Yong-Wie
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.32-38
    • /
    • 2003
  • Engineering ceramics have many unique characteristics both in mechanical and physical properties such as high temperature hardness, high thermal, chemical and electrical resistance. However, its machinability is very poor in conventional machining due to its high hardness and severe tool wear. In the current experimental study alumina($Al_2O_3$) was ultrasonically machined using SiC abrasives under various machining conditions to investigate the material removal rate and surface quality of the machined samples. Under the applied amplitude of 0.02mm, 27kHz frequency, three slurry ratios (abrasives water by weight) of 11, 13 and 15 with different tool shapes and applied pressure levels, the machining was conducted. Using the mesh number of 240 abrasive, slurry ratio of 11 and static pressure of $25kg/cm^2$, maximum material removal rate of $18.97mm^3/mm$ was achieved with mesh number of 600 SiC abrasives and static pressure of $30kg/cm^2$, best surface roughness of $0.76{\mu}m$ Ra was obtained.

  • PDF

A Study on the ELID Grinding Characteristics of SF-5 Glass and Quartz Glass for the Nano Surface Roughness (나노 표면거칠기틀 위한 SF-5유리와 수정유리의 ELID 연삭 특성에 관한 연구)

  • 곽태수;박상후;오오모리히토시;배원병;양동열
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.56-62
    • /
    • 2003
  • The precision fabrication of glass is increasingly demanded for the latest industrial applications of spherical lenses, micro-optical components, and so on. In many cases, the surface roughness of glass is required to be minute for improving the optical characteristics. In this paper, machining characteristics of SF-5 glass and quarts glass are studied by using the ELID grinding process to get mirror surface and productivity compared with a general lapping process. A rotary type grinder with air spindle was used for the experiments. Mitutoyo surface tester and AFM were also used to measure the grinded surface of glass. As the results of experiments, they showed that the surface roughness (Ra) of SF-5 glass was under 7.8 nm and that of quartz glass was under 3.0 m using the # 8000 grinder. So, the possibility of highly efficient and accurate surface for optical components can be achieved by the ELID grinding process.

Dynamic Chanrateristics of Spindle for the External Cylindrical Grinding Machine Considered the Shell Mode Vibration of Wheel (Wheel의 원반 진동을 고려한 외경연삭 주축의 동특성)

  • 하재훈;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1000-1004
    • /
    • 1995
  • In the case of the external cylindrical grinding machine, the grinding mechanism can cause a wheel to vibrate due to a wheel cutter. This phenomena will bring about the unsymmetric wear up to high frequency without any relation of rotational speed. So far, when the grinding spindle is analyzed, it is assumed that a wheel is considered as lumped mass at the endof a beam. Nowadays, there is a tendency to use the wheel with a lsrge diameter or CBN wheel to achieve the high speed and accuracy grinding performance. Therefore, this kind of assumption is no longer valid. At the analysis of the grinding spindle, the parameter which dapends on the dynamic characteristics is a combination force between each part. For example, there is the tightness torque of a bolt and taper element in the grindle. In addition, the material property of the wheel can contribute the dynamic characteristics. This paper shows the mode participation of the shell mode of the wheel in the grindle and the dynamic characteristics according to the parameters which are the configuration of the flange and tightness torque of a bolt and taper. Modal parameter of the wheel, flange and the spindle can be extracted through frequency response function obtained by modal test. After that, by changing the tightness torque and kinds of wheel, we could accomplish the test in the whole combined grinding spindle. To perform modal analysis of vibration characteristics in the grinding spindle, we could develop the model of finite element method.

  • PDF

Wear Characteristics of Metal Ball and Seat for Metal-Seated Ball Valve (금속 볼 밸브의 볼·시트 마멸 특성에 관한 실험적 연구)

  • Bae, Junho;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.32 no.1
    • /
    • pp.32-37
    • /
    • 2016
  • The wear characteristics of metal ball and seat in a metal-seated ball valve significantly affect the performances such as leakage and valve torque. In this work, the wear characteristics of metal ball and seat are experimentally investigated. A stainless steel ball and seat with a high corrosion-resistant coating are prepared and a component level test was performed. The hardness and surface roughness of specimens cut from the metal ball and seat are measured before and after the test using a micro-Vickers hardness tester and confocal microscopy, respectively. In order to assess the wear characteristics, the surfaces of the specimens are carefully examined after the test. The confocal microscope data show that the surface roughness values of both the ball and seat increase by a factor of 3-4, which may lead to an increase in valve torque. However, the wear of the seat is found to be more significant than that of the ball. In addition, a comparison of the surfaces of the ball and seat before and after testing revealed that adhesive and abrasive wear are the major wear mechanisms. The results of this study may aid in the design of metal-seated ball valves from the tribological point of view.

Properties of Friction Coefficient with Re-Ir Coating Surface (Re-Ir 코팅에 따른 표면 마찰 계수 특성 연구)

  • Lee, Ho-Shik;Cheon, Min-Woo;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.676-677
    • /
    • 2011
  • Rhenium-Iridium(Re-Ir) thin films were deposited onto the tungsten carbide(WC) molding core by sputtering system. The Re-Ir thin films on tungsten carbide molding core were analyzed by scanning electron microscope(SEM) and surface roughness. The Re-Ir coating technique has been intensive efforts in the field of coating process because the coating technique and process have been their feature, like hardness, high elasticity, adrasion resistance and mechanical stability and also have been applied widely the industrial and biomedical areas. In this report, tungsten carbide(WC) molding core was manufactures using high performance precision machining and the efforts of Re-Ir coating on the surface roughness.

  • PDF

Machining Characteristics According to the Wheel Wear in Surface Grinding for Structural Ceramics of $Si^3 N_4$ ($Si^3 N_4$ 구조용세라믹재의 연삭가공시 숫돌마멸에 따른 가공특성)

  • 왕덕현;김원일;신경오
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.4
    • /
    • pp.9-16
    • /
    • 2003
  • In this study, the decision of dressing time for diamond wheel was analyzed by observing with acoustic emission signals and surface roughness, and also obtained the machining characteristics by weibull distribution plot for the values of bending strength. From the experimental study, it was possible to predict the time of re-dressing for the diamond grinding wheel with the analysis of acoustic emission signals and surface roughness values, and following conclusions were obtained. The root-mem-square values of acoustic emission signals were obtained low as the increased of table speed for different abrasive grain size. This is caused by the lack of grinding power which is not able to get rid of all real grinding mass of depth as the table speed is increased. The values of bending strength for ground $Si_3 N_4$ specimens were decreased for gain size of #400 than that of #60, but it was found that the surface roughness values for gain size of #60 were better than that of #400. As compared the shape parameter of weibull distribution plot for the values of bending strength, it was found that the reliability of bending strength for grain size of #60 increased than that of #400.

A Study on the Grinding Characteristics of the Quartz(II) (Quartz의 연삭 특성에 관한 연구 (II))

  • Lim, J. G.;Ha, S. B.;Kim, S. H.;Choi, H.;lee, J. C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.875-879
    • /
    • 2000
  • In the previous report1), the grinding characteristics of quartz were investigated. In this paper, the grinding mechanisms of brittle materials including ceramics and quartz are modeled and a new parameter SDR(Surface roughness Direction Ratio) is proposed to characterize the grinding mechanisms of such materials. A set of experiments were performed to verify the effectiveness of the suggested parameter. The experimental results indicate that the plastic deformation is the dominant material removal mode at the grinding conditions which show the higher value of SDR. In the case of quartz, the material was removed by brittle fracture in a lower value of SDR and by plastic deformation in a higher value of it. SDR is not affected by wheel mesh size when brittle fracture occured. But in the plastic deformation case, SDR value increases with wheel mesh size.

  • PDF

ELID characteristics of internal grinding wheel by using M/C (M/C에 사용되는 내면연삭 휠의 ELID 특성)

  • Kim, S. H.;Bang, J. Y.;Ji, H. G.;Choi, H.;lee, J. C.;Cheong, S. H.;Jae, T.J
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.999-1002
    • /
    • 1997
  • In this study, in order to set ELID conditions in the internal grinding wheel, the characteristics with the variations of grit size, output voltage and peak current were examined by using conventional machining center(M/C) equipped with electrolytic in-process dressing(EL1D). The initial working voltage was lowered and the working current was high with increasing grit size. The insulating layer thickness increased, as the final voltage increased with the output voltage and peak current. The initial wear rate of the wheel machined with ELID were measured indirectly by using surface roughness tracer. The initial wear rate of the wheel with ELID increased along with high grit size. In case that the grit size with ELID was low, the output voltage and peak current had to be increased to increase the insulating layer thickness. In case of the high grit size, the output voltage and the peak current were established low, which made the insulating layer thickness decreased.

  • PDF

ENGINEERING CERAMICS의 평면연삭가공 특성에 관한 연구

  • 김호철;김원일;강재훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.136-144
    • /
    • 1992
  • Recently, Silicon Nitrde ceramic is regarded as the representative engineering ceramic with the excellent mechanical properties and many functions for mechanical components and parts among various kinds of ceramics in the mechanical industry. But, during the manufacturing of engineering ceramics, there is many volumetric shrinkage coupled with a distortion of the parts which is produced. Due to the requirement for high accuracy of size, form, and surface finish of the components, machining is needed surely. Nowdays, grinding with a resin bond type diamond wheels has been generally applied to machining of the engineering ceramics in the whole world because that it can be conveniently proceeded for workers to dress of tool and made with high reliability in producing factories among many bond type super-abrasive wheels yet. It is important task for attaining prescribed mechanical components with high reliability to observe the grinding mechanism of ceramics as like generation of cracks and chipping of material during process. Because they considerably effects on the strength characteristic of machined mechanical components. In this study, various surface grinding experiments using resin bond type diamond wheels are carried out for Silicon Nitride ceramic. Grinding mechanism of ceramics is observed experimentally and the relationship with various conditions is also attained. Form this experimental study, some useful machining data and information to determine proper machining condition for grinding of Silicon Nitride ceramic is obtained.