• 제목/요약/키워드: 연삭숫돌

검색결과 152건 처리시간 0.024초

연삭가공에 있어서 과도적 절삭현상

  • 송지복
    • 한국정밀공학회지
    • /
    • 제1권2호
    • /
    • pp.10-14
    • /
    • 1984
  • 연삭가공은 숫돌을 구성하는 하나 하나의 입자가 공작물을 절삭하는 과정이므로 연삭현상을 이해하기 위해서는 먼저 개개 절돈의 절삭현상을 알지 않으면 안된다. 연삭입자의 절삭현상을 해명함에 있어서 기초가 되는 것은 입자와 공작물과의 간섭형상이다. 종래의 연삭 이론은 이와같은 기하학적 간섭형상이 모두 chip이 되어 제거된다(연소입자와 공작물과의 간섭 과정에서는 절삭현상만이 존재한다.)는 가정하에 연삭기구를 해석하려 하였으나 최근에 이르러 상호간섭 조건을 경계조건으로 하여 많은 사람들에 의해 연소입자의 절삭현상을 연구한 결과 연삭입자의 절삭과정은 과도적 절삭임이 밝혀졌다. 이와같은 연삭현상은 새로운 연삭이론에 기초가 될 뿐만아니라 Chip 과 표면생성기구의 관점에서도 극히 중요한 것이 된다.

  • PDF

High-speed CNC Grinding Center구조의 동적거동 해석 (Dynamic Characteristic Analysis of CNC Grinding Center)

  • 박종권;노승국;성활경
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.648-652
    • /
    • 1996
  • Grinding Center(GC)는 머시닝센터가 갖는 드릴링, 태핑 등의 절삭가공의 수행은 물론 주축의 고속화, 이송계의 고정밀화를 토대로 연삭숫돌의 절삭성 회복과 다듬질면의 거칠기를 확보하기 위한 기계로서 Dressing/Truing장치, 기상계측 장치, CNC기능을 구비하여 테이블과 공구간에 3차원의 상대운동을 시킴으로써 평면연삭, 내면연삭, 홈연삭, 캠연삭 등의 복잡한 형상의 연삭가공에 대해서도 공정을 집약화 할 수 있는 기계이다.(중략)

  • PDF

숫돌 형상 변화에 따른 연삭가공 특성에 관한 연구 (A Study on the Characteristics of Grinding due to the Different Shape of Wheel)

  • 강신엽;왕덕현;김원일;이윤경
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.56-60
    • /
    • 1996
  • An experimental study on the grinding temperature and Acoustic Emission(AE) signals due to the different shapes of wheel was conducted. The grinding characteristics by slotted shapes of wheel changed by width and helical angle, were compared with those by general one. Lower grinding temperature was obtained for 30$^{\circ}$ helical angle with 10mm width, Root Mean Square(RMS) values of AE signals were higher for slotted wheel rather than general one.

  • PDF

적층연삭숫돌을 사용한 원통연삭 공정에서 가공특성에 관한 연구 (A study on the grinding characteristics of the workpiece using the laminated grinding wheel in the cylindrical grinding process)

  • 김광희;이은종;김강
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.165-171
    • /
    • 2000
  • To get smoother ground surface, it is required to replace the grinding wheel with a finer-grit wheel. When the operator replaces the grinding wheel, the balancing and dressing of the wheel surface are necessary. So this replacement has a lot of problems like inconvenience to operators, delays in the operation time, and ineffectiveness in the production process. Therefore, a laminated grinding wheel, which consists of three layers, is provided. The side layers are coarse grits and the middle layer is made up of fine grits. To show the effectiveness of the laminated grinding wheel, experiments on the surface roughness and the material removal rate were performed respectively. As a result, it was found that the grinding process using a laminated grinding wheel can generate smoother ground surface in shorter time.

  • PDF

슬롯형상의 연삭숫돌에 의한 평면연삭가공 (Surface Grinding Process by Slot-shaped Grinding Wheel)

  • 왕덕현
    • 한국생산제조학회지
    • /
    • 제8권1호
    • /
    • pp.52-59
    • /
    • 1999
  • An experimental study on the grinding temperature, surface roughness and Acoustic Emission(AE) signals was conducted with different shapes of wheel. The grinding characteristics for slotted shapes of wheel changed by width and helical angle, were compared with those by general one. Lower grinding temperature was obtained for 30$^{\circ}$helical angle with 10mm width and Root Mean square(RMS) values of AE signals were lower for slotted shapes rather than general one. Surface roughness characteristics of slotted shapes found to be rough but the value of roughness for 45$^{\circ}$helical angel with 6mm width, represented to similar tendency general one.

  • PDF

평면연삭에서 연삭력 변화와 숫돌수명 (Variation of Grinding Force and Wheel Life in Surface Grinding)

  • 최성삼;구양;곽재섭;하만경
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.1109-1112
    • /
    • 2001
  • In the grinding process, the edge of shape is very important to evaluate the surface roughness and the precision of dimension. To keep precision of product, parameters with respect to the amount of wheel wear have to limit by grinding condition. In this paper, we measured variation of grinding force to seek the grinding characteristics by the amount of wheel wear in surface grinding. Also, we find out that how these condition give influence to wheel life.

  • PDF

평면 연삭에서의 연삭 숫돌 마모 모니터링 (Monitoring of Grinding Wheel Wear in Surface Grinding)

  • 주광훈;김현수;홍성욱;박천홍
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.613-616
    • /
    • 2000
  • This paper deals with monitoring of grinding wheel wear in surface grinding process. A laser scanning micrometer is used to measure the circumferential shape as well as the axial shape of grinding wheel. The monitoring system is applied to two kinds of grinding methods: plunge and traverse grinding. Through experiments, it is found that measurement of grinding wheel wear reveals information of roughness of ground surface and the adequate dressing time. In addition, monitoring of grinding wheel wear makes it possible to identify abnormal grinding conditions.

  • PDF

적층연삭숫돌에 의한 원통연삭 가공물의 표면 특성 (Surface Characteristics of Cylindrically Ground Workpiece using Laminated Grinding Wheel)

  • 김민철;김광희;이은종;김강
    • 한국정밀공학회지
    • /
    • 제18권3호
    • /
    • pp.35-39
    • /
    • 2001
  • The precision grinding process is carried out with fine-cutting operation after coarse-cutting operation. So, the laminated grinding wheel has been developed to reduce the ineffectiveness induced by changing the operations. In this study, to investigate the possibility of the practical use of the laminated grinding wheel, the surface residual stress of the workpiece ground by the laminated grinding wheels was compared with that ground by the general grinding wheel, and the influence of the difference in grain sizes, between the coarse grit and fine grit of the laminated grinding wheel, on the surface roughness of the workpiece was investigated.

  • PDF

냉각 공기장치에 의한 환경 친화 연삭 연구 (A Study on Environment- Friendly Grinding by Using Cold Air)

  • 김남경;이동호;성낙창;송지복
    • 한국정밀공학회지
    • /
    • 제15권9호
    • /
    • pp.145-151
    • /
    • 1998
  • In this study, the experimental and analytic investigation with cold air system has been performed for improving the working environment of the conventional grinding fluid. Very simple cold air system was developed which could replace by the conventional grinding fluid system. The identification of heat of grinding Bone is very important for precision grinding. The experimental data was analysed to investigate the heat which was transferred to the workpiece. It was found that 45∼55% of the total energy for dry grinding, 22∼28% for wet grinding, and 32∼35% for cold air system are conducted to the workpiece in grinding with cubic boron nitride wheel. Cubic boron nitride wheel could reduce the residual stress and thermal demage comparing with aluminium oxide wheel, because cubic boron nitride wheel has very high extreme thermal conductivity.

  • PDF

금형용 WC-Co의 초정밀 연삭 가공 조건에 관한 연구 (Study on Ultra-Precision Grinding Condition of WC-Co)

  • S.J. Heo;J.H. Kang;W.I. KIm
    • 한국정밀공학회지
    • /
    • 제10권1호
    • /
    • pp.42-51
    • /
    • 1993
  • Recently, WC-Co have some excellent properities as the material for the mechanical component such as metallic moulding parts, ball dies parts, and punch parts. This paper describes the surface roughness and grinding force caused by experimental study on the surface grinding of WC-Co with ultra-precision like a mirror shape using diamond wheel. Also, some investigations are carried out using WA grinding wheel to increase improved ground surface roughness such as polishing, lapping effect. Some important results obtained here are summarized as follow. 1) Within this experimental grinding condition, we can be obtained $R_{max}.\;2\mu\textrm{m}\;R_a\;0.3\mu\textrm{m}$ whichare the most favourable ground surface roughness using #140 diamond wheel, and improved surface roughness values about 20 .approx. 25% throughout 5 times sparkout grinding 2) The value of surface roughness is Rmax. $0.49\mu\textrm{m},\;R_a\;0.06\mu\textrm{m}$ using #600 diamond wheel. 3) The area of no rack zone is less than $F_{n}$ 0.27N/mm, Ft 0.009N/mm

  • PDF