• Title/Summary/Keyword: 연삭기술

Search Result 110, Processing Time 0.038 seconds

The Development of Pin Screws into the Bone for External Fixator (체외 고정구용 골 삽입 금속 나사 개발)

  • Choi, Y.C.;Rhee, K.M.;Na, W.H.;Song, B.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.2 no.1
    • /
    • pp.5-17
    • /
    • 2009
  • We developed bone-insertion pin screw that can be used for purposed treatment by combining with the external fixator which is the subsidiary tool for the healing of the fracture (open fracture of long bone, reconstruction of soft tissue and arthrodesis etc.) Furthermore, for the frist time, we succeeded in domestic-producing this screw, using specially-designed treating tool stuck on the lathe machine and abrasive blasting machine, and the post-dealing technique and process. In comparison with other foreign products, we could get more desirable results in various tests. This pin screw has 103% characteristics of the average of foreign products. Thus we'd like to introduce design techniques, post-dealing process and result of function tests.

  • PDF

An In-Process Measurement Technique for Non-contact Monitoring of Surface Roughness and form Accuracy of Ground Surfaces (연삭 가공면의 표면조도와 형상정밀도의 비접촉식 인프로세스 측정기술)

  • Yim, Dong-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.4 no.2
    • /
    • pp.36-46
    • /
    • 1987
  • An optical technique using laser for non-contact measurement of surface roughness and form accuracy of ground surfaces is presented. It is found that, when a ground surface is illuminated by a beam of laser light, the roughness height and slope distribution has significant influence on the pattern of reflection and it maintains an unique Gaussian distribution relationship with the surface roughness. The principle idea of the optical measurement system is therefore monitor the radiation, and then calibrate it in process against surface roughness by means of necessary digital data processing. On the other hand, measuring the form accuracy of a ground surface is accomplished by using a triangular method, which is based on observing the movement of an image of a spot of light projected onto the surface. The image is focused, through a series of lenses for magnification, on a photodetector array lf line configur- ation. Then the relative movement of image and consequently the form accuracy of the surface can be obtained through appropriate calibration procedures. Experimental test showed that the optical roughness measurement technique suggested in this work is very efficient for most industrial applications being capable of monitoring the roughness heights ranging 0.1 to 0.6 .$\mu$m CLA values. And form accuracy can be measured in process with a resolution of 10 .$\mu$m.

  • PDF

Properties of Friction Coefficient with Re-Ir Coating Surface (Re-Ir 코팅에 따른 표면 마찰 계수 특성 연구)

  • Lee, Ho-Shik;Cheon, Min-Woo;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.676-677
    • /
    • 2011
  • Rhenium-Iridium(Re-Ir) thin films were deposited onto the tungsten carbide(WC) molding core by sputtering system. The Re-Ir thin films on tungsten carbide molding core were analyzed by scanning electron microscope(SEM) and surface roughness. The Re-Ir coating technique has been intensive efforts in the field of coating process because the coating technique and process have been their feature, like hardness, high elasticity, adrasion resistance and mechanical stability and also have been applied widely the industrial and biomedical areas. In this report, tungsten carbide(WC) molding core was manufactures using high performance precision machining and the efforts of Re-Ir coating on the surface roughness.

  • PDF

SEM and PV Properties of WC Core Surface with DLC Coating (초경합금(WC) 코어면의 Re-Ir 코팅에 따른 표면 조도 특성)

  • Lee, Ho-Shik;Park, Yong-Pil;Cheon, Min-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.828-829
    • /
    • 2010
  • Rhenium-Iridium(Re-Ir) thin films were deposited onto the tungsten carbide(WC) molding core by sputtering system. The Re-Ir thin films on tungsten carbide molding core were analyzed by scanning electron microscope(SEM) and surface roughness. The Re-Ir coating technique has been intensive efforts in the field of coating process because the coating technique and process have been their feature, like hardness, high elasticity, adrasion resistance and mechanical stability and also have been applied widely the industrial and biomedical areas. In this report, tungsten carbide(WC) molding core was manufactures using high performance precision machining and the efforts of Re-Ir coating on the surface roughness.

  • PDF

A study on the surface grinding machining of Engineering ceramics using "In-process dressing" method (연속 드레싱 공정을 이용한 엔지니어링 세라믹스의 평면 연삭 가공에 관한 연구)

  • Kang, Jae-hoon;Heo, Seoung-jung;Kim, Won-il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.178-189
    • /
    • 1993
  • Engineering ceramics have some excellent properties as the material for the mechanical components. It is, however, very difficult to grind ceramics with high efficiency because of their high strength, hardness and brittleness. In this paper experiments are carried out to obtain the effect of "In-process dressing" to grind the Engineering ceramics with high efficiency. To save running time for dressing process and obtain restraint effect of diamond grain wear, "In-process dressing" system usint WA stick type honing stone is proposed. Representative High Strength Engineering ceramics A1$_{2}$O$_{3}$ and Si$_{3}$N$_{4}$are ground with diamond wheel. Also bending strengrh test is carried out to check upward tendancy of mecahnical properties as the result of machining defact restraint through the grinding maching method using "In-process dressing" process. Some results obtained in this study provide useful information to attain the high efficency grinding and the high mechanical properties of Engineering ceramics.rties of Engineering ceramics.

  • PDF

A Study of Optimum Molding Condition of Aspheric Glass Lens(I) ; Annealing Condition Effect (비구면 Glass렌즈 최적 성형조건 연구(I) ; 서냉조건효과)

  • Cha, Du-Hwan;Kim, Hyeon-Uk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.07a
    • /
    • pp.197-198
    • /
    • 2006
  • 본 연구에서 개발하는 성형렌즈는 그림1과 같이 한쪽 면이 비구면인 평볼록 형상이다. Glass렌즈의 고온압축성형을 위해서는 초정밀 가공기술로 제작된 성형Mold가 필요하며, Mold재질에 따른 성형기술의 확립이 필수적이다. 또한, 성형Mold의 표면과 융착반응이 없는 Glass소재가 요구된다. 본 실험을 위한 성형Mold는 코발트(Co) 함량 0.5 %의 초경합금(WC; 일본, Everloy社, 002K)을 초정밀 연삭가공하여 제작하였다. Glass소재는 전이점(Transformation Point; Tg) $572\;^{\circ}C$,항복점(Yielding Point; At) $630\;^{\circ}C$의 열적 특성을 갖는 K-BK7(일본, Sumita社)을 사용하였으며, d선에서 굴절률 및 아베수는 각각 1.51633, 64.1이다. 비구면 Glass렌즈 성형은 GMP(Glass Molding Press; 일본, Sumitomo社, Nano Press-S)장비를 사용하여 성형온도 $625\;^{\circ}C$, 서냉온도 $550\;^{\circ}C$로 고정하고 성형압력를 200-800 N 범위에서 변화시켰다. 표 1에 성형변수로 사용한 서냉속도와 서냉전환온도 조건을 나타낸다. 표1과 같이 각 서냉조건별로5장의 렌즈를 성형 후 특성값이 평균치에 가까운 3장을 선별하여 그 특성을 비교하였다. 각 조건에 따른 성형렌즈의 형상정도(일본, Panasonic社, UA3P, 자유곡면형상측정기), 두께(일본, Mitutoyo社, MDC-25M, 마이크로메터), 굴절률(일본, Shimatus社, KPR-200, 정밀굴절률측정기) 및 MTF[해상도](독일, Trioptics社, Image Master HR, MTF-Field)를 측정하여 각각의 광학적 특성을 비교 평가하였다. 비구면 Glass렌즈 성형장비와 형상측정기를 그림 2, 3에 각각 나타낸다.

  • PDF

Chemical Mechanical Polishing: A Selective Review of R&D Trends in Abrasive Particle Behaviors and Wafer Materials (화학기계적 연마기술 연구개발 동향: 입자 거동과 기판소재를 중심으로)

  • Lee, Hyunseop;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.274-285
    • /
    • 2019
  • Chemical mechanical polishing (CMP), which is a material removal process involving chemical surface reactions and mechanical abrasive action, is an essential manufacturing process for obtaining high-quality semiconductor surfaces with ultrahigh precision features. Recent rapid growth in the industries of digital devices and semiconductors has accelerated the demands for processing of various substrate and film materials. In addition, to solve many issues and challenges related to high integration such as micro-defects, non-uniformity, and post-process cleaning, it has become increasingly necessary to approach and understand the processing mechanisms for various substrate materials and abrasive particle behaviors from a tribological point of view. Based on these backgrounds, we review recent CMP R&D trends in this study. We examine experimental and analytical studies with a focus on substrate materials and abrasive particles. For the reduction of micro-scratch generation, understanding the correlation between friction and the generation mechanism by abrasive particle behaviors is critical. Furthermore, the contact stiffness at the wafer-particle (slurry)-pad interface should be carefully considered. Regarding substrate materials, recent research trends and technologies have been introduced that focus on sapphire (${\alpha}$-alumina, $Al_2O_3$), silicon carbide (SiC), and gallium nitride (GaN), which are used for organic light emitting devices. High-speed processing technology that does not generate surface defects should be developed for low-cost production of various substrates. For this purpose, effective methods for reducing and removing surface residues and deformed layers should be explored through tribological approaches. Finally, we present future challenges and issues related to the CMP process from a tribological perspective.

Evaluation of 12nm Ti Layer for Low Temperature Cu-Cu Bonding (저온 Cu-Cu본딩을 위한 12nm 티타늄 박막 특성 분석)

  • Park, Seungmin;Kim, Yoonho;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.9-15
    • /
    • 2021
  • Miniaturization of semiconductor devices has recently faced a physical limitation. To overcome this, 3D packaging in which semiconductor devices are vertically stacked has been actively developed. 3D packaging requires three unit processes of TSV, wafer grinding, and bonding, and among these, copper bonding is becoming very important for high performance and fine-pitch in 3D packaging. In this study, the effects of Ti nanolayer on the antioxidation of copper surface and low-temperature Cu bonding was investigated. The diffusion rate of Ti into Cu is faster than Cu into Ti in the temperature ranging from room temperature to 200℃, which shows that the titanium nanolayer can be effective for low-temperature copper bonding. The 12nm-thick titanium layer was uniformly deposited on the copper surface, and the surface roughness (Rq) was lowered from 4.1 nm to 3.2 nm. Cu bonding using Ti nanolayer was carried out at 200℃ for 1 hour, and then annealing at the same temperature and time. The average shear strength measured after bonding was 13.2 MPa.

Development of Abrasive Film Polishing System for Cover-Glass Edge using Multi-Body Dynamics Analysis (다물체 동역학 해석을 이용한 커버글라스 Edge 연마용 Abrasive Film Polishing 시스템 개발)

  • Ha, Seok-Jae;Cho, Yong-Gyu;Kim, Byung-Chan;Kang, Dong-Seong;Cho, Myeong-Woo;Lee, Woo-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.7071-7077
    • /
    • 2015
  • In recently, the demand of cover-glass is increased because smart phone, tablet pc, and electrical device has become widely used. The display of mobile device is enlarged, so it is necessary to have a high strength against the external force such as contact or falling. In fabrication process of cover-glass, a grinding process is very important process to obtain high strength of glass. Conventional grinding process using a grinding wheel is caused such as a scratch, chipping, notch, and micro-crack on a surface. In this paper, polishing system using a abrasive film was developed for a grinding of mobile cover-glass. To evaluate structural stability of the designed system, finite element model of the polishing system is generated, and multi-body dynamic analysis of abrasive film polishing machine is proposed. As a result of the analysis, stress and displacement analysis of abrasive film polishing system are performed, and using laser displacement sensor, structural stability of abrasive film polishing system is confirmed by measuring displacement.

A Comparative Study on Power Tool Manufacturers' Products Spec. and Design Development Features - By the Case Study on BOSCH, BLACK&DECKER and KEYANG Electrics- (전동공구 회사의 제품사양별 디자인개발특성 비교연구 -보슈(BOSCH), 블랙앤데커(BLACK&DECKER), 계양전기 사례를 중심으로 -)

  • 채승진
    • Archives of design research
    • /
    • v.17 no.1
    • /
    • pp.383-392
    • /
    • 2004
  • The power tools is the product using working power generated by electric motor. Many companies are manufacturing numerous devices. Main features of tools are included various assembled products, small, light and solid and durable enough to match several standards. Fundamental requirements for the product is excellent performance and convenience for use. The quality of them depends on the equipped motor'(s) capability, accuracy of gear and endurance against worn-out. By adapting the state-of-the-art parts, they could be used in the place from home to heavy industry broadly. They can be classified electronic drills, grinders, saws and sanders families for the household appliances. For industrial tools, bore drill, grinder, polisher, and driver drill are classified as special and high priced group. This study presents the strategy of power tool development of BOSCH, BLACK&DECKER and KEYANG. Their products were analyzed in terms of product line and product mix concept. Then they are examined by design elements, such as color, shape and material for housing. As an analysis method, the image scale parameter and criteria were applied to each company's product.

  • PDF