• Title/Summary/Keyword: 연마선택비

Search Result 34, Processing Time 0.017 seconds

Silicon surface texturing for enhanced nanocrystalline diamond seeding efficiency (나노결정질 다이아몬드 seeding 효율 향상을 위한 silicon 표면 texturing)

  • Park, Jong Cheon;Jeong, Ok Geun;Kim, Sang Youn;Park, Se Jin;Yun, Young-Hoon;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.86-92
    • /
    • 2013
  • $SF_6/O_2$ inductively coupled plasmas were employed to texture Si surface as a pretreatment for nanocrystalline diamond film growth. It was found that the $SF_6/O_2$ plasma texturing provided a very wide process window where normalized roughness values in the range of 2~16 could be obtained. Significantly improved nucleation densities of ${\sim}6.5{\times}10^{10}cm^{-2}$ compared to conventional mechanical abrasion were achieved after seeding for the textured Si substrate.

Role of oxidant on polishing selectivity in the chemical mechanical planarization of W/Ti/TiN layers (W/Ti/TiN막의 연마 선택비 개선을 위한 산화제의 역할)

  • Lee, Kyoung-Jin;Seo, Yong-Jin;Park, Chang-Jun;Kim, Gi-Uk;Kim, Sang-Yong;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.33-36
    • /
    • 2003
  • Tungsten is widely used as a plug for the multi-level interconnection structures. However, due to the poor adhesive properties of tungsten (W) on $SiO_2$ layer, the Ti/TiN barrier layer is usually deposited onto $SiO_2$ for increasing adhesion ability with W film. Generally, for the W-CMP (chemical mechanical polishing) process, the passivation layer on the tungsten surface during CMP plays an important role. In this paper, the effect of oxidants controlling the polishing selectivity of W/Ti/TiN layer were investigated. The alumina $(Al_2O_3)$ abrasive containing slurry with 5 % $H_2O_2$ as the oxidizer, was studied. As our preliminary experimental results, very low removal rates were observed for the case of no-oxidant slurry. This low removal rate is only due to the mechanical abrasive force. However, for Ti and TiN with 5 % $H_2O_2$ oxidizer, different removal rate was observed. The removal mechanism of Ti during CMP is mainly due to mechanical abrasive, whereas for TiN, it is due to the formation of metastable soluble peroxide complex.

  • PDF

THE BONDING DURABILITY OF RESIN CEMENTS (레진시멘트의 접착 내구성에 관한 연구)

  • Cho, Min-Woo;Park, Sang-Hyuk;Kim, Jong-Ryul;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.4
    • /
    • pp.343-355
    • /
    • 2007
  • The objectives of this study was to evaluate the durability of 4 resin cements by means of microtensile bond strength test combined with thermocycling method and fractographic FE-SEM analysis. Experimental groups were prepared according to thermocycling (0, 1,000, 5,000) and the kind of resin cements, those were Variolink II, Multilink, Panavia F 2.0, Rely X Unicem. Flat dentin surfaces were created on mid-coronal dentin of extracted third molars. Then fresh dentin surface was grounded with 320-grit silicon carbide abrasive papers to create uniform smear layers. Indirect composite block (Tescera, Bisco Inc., Schaumburg, IL, USA) was fabricated ($12\;{\times}\;12\;{\times}\;6\;mm^3$). It's surface for bonding to tooth was grounded with silicon carbide abrasive papers from 180- to 600-grit serially, then sandblasted witk $20\;-\;50\;{\mu}m$ alumina oxide. According to each manufacturer's instruction, dentin surface was treated and indirect composite block was luted on it using each resin cement. For Rely X Unicem, dentin surface was not treated. The bonded tooth-resin block were stored in distilled water at $37^{\circ}C$ for 24 hours. After thermocycling, the bonded tooth-resin block was sectioned occluso-gingivally to 1.0 mm thick serial slabs using all Isomet slow-speed saw (Isomet, Buehler Ltd, Lake Bluff, IL, USA). These sectioned slabs were further sectioned to $1.0\;{\times}\;1.0\;mm^2$ composite-dentin beams. The specimens were tested with universal testing machine (EZ-Test, Shimadzu, Japan) at a crosshead speed of 1.0 mm/min with maximum load of 500 N. The data was analyzed using one-way ANOVA and Duncan's multiple comparison test at $p\;{\leq}\;0.05$ level. Within the limited results, we conclude as follows; 1. The bond strength of Variolink II was evaluated the highest among experimental groups and was significantly decreased after 1,000 thermocycling (p < 0.05). 2. The bond strength of Multilink was more affected by thermocycling than the other experimental groups and significantly decreased after 1,000 thermocycling (p < 0.05). 3. Panavia F 2.0 and Rely X Unicem showed the gradually decreased tendency of microtensile bond strength according to thermocycling but there was no significant difference (p > 0.05). 4. Adhesive based-resin cements showed lower bond strength with or without thermocycling than composite based-resin cements. 5. Variolink II & Multilink showed high bond strength and mixed failure, which was occurred with a thin layer of luting resin cement before thermocycling and gradually increased adhesive failure along the dentin surface after thermocycling. The bonding performance of resin cement can be affected by application procedure and chemical composition. Composite based-resin cement showed higher bond strength and durability than adhesive based-resin cement.

A comparative study on the fit and screw joint stability of ready-made abutment and CAD-CAM custom-made abutment (기성 지대주와 맞춤형 CAD-CAM 지대주의 적합 및 나사 안정성 비교)

  • Kim, Jong-Wook;Heo, Yu-Ri;Kim, Hee-Jung;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.4
    • /
    • pp.276-283
    • /
    • 2013
  • Purpose: The purpose of this study was to investigate the fit and screw joint stability between Ready-made abutment and CAD-CAM custom-made abutment. Materials and methods: Osstem implant system was used. Ready-made abutment (Transfer abutment, Osstem Implant Co. Ltd, Busan, Korea), CAD-CAM custom-made abutment (CustomFit abutment, Osstem Implant Co. Ltd, Busan, Korea) and domestically manufactured CAD-CAM custom-made abutment (Myplant, Raphabio Co., Seoul, Korea) were fabricated five each and screws were provided by each company. Fixture and abutments were tightening with 30Ncm according to the manufacturer's instruction and then preloding reverse torque values were measured 3 times repeatedly. Kruskal-Wallis test was used for statistical analysis of the preloading reverse torque values (${\alpha}=.05$). After specimens were embedded into epoxy resin, wet cutting and polishing was performed and FE-SEM imaging was performed, on the contact interface. Results: The pre-loading reverse torque values were $26.0{\pm}0.30Ncm$ (ready-made abutment; Transfer abutment) and $26.3{\pm}0.32Ncm$ (CAD-CAM custom-made abutment; CustomFit abutment) and $24.7{\pm}0.67Ncm$ (CAD-CAM custom-made abutment; Myplant). The domestically manufactured CAD-CAM custom-made abutment (Myplant abutment) presented lower pre-loading reverse torque value with statistically significant difference than that of the ready-made abutment (Transfer abutment) and CAD-CAM custom-made abutment (CustomFit abutment) manufactured from the same company (P=.027) and showed marginal gap in the fixture-abutment interface. Conclusion: Within the limitation of the present in-vitro study, in domestically manufactured CAD-CAM custom-made abutment (Myplant abutment) showed lower screw joint stability and fitness between fixture and abutment.