• Title/Summary/Keyword: 연료-질소산화물

Search Result 233, Processing Time 0.028 seconds

항만구역 내 선박 배기가스 산출량 연구 - 서산 대산항 컨테이너 부두를 중심으로 -

  • Kim, Hwa-Yeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.357-357
    • /
    • 2018
  • 국제해사기구(IMO)에서는 황산화물(SOx)에 대한 배출 규제를 강화하고 있다. 2020년 1월 1일부터는 황함유량 0.5% 이하 선박연료유 사용을 의무화하고 있다. 그리고 온실가스 배출량 모니터링을 2019년 1월 1월부터 시행하여 총톤수 5천톤 이상 선박은 연료유 사용량을 의무적으로 보고해야 한다. 또한 배출통제구역(Emission Control Area, ECA)이 확대되고 있으며 지역별로도 저유황유 사용 의무화를 도입하는 항만이 증가하고 있다. 이와 같이 항만구역에서 선박 배기가스 배출 규제를 강화하고 있다. 본 연구에서는 컨테이너 물동량이 증가하고 있는 서산 대산항 컨테이너 부두를 중심으로 항만구역에서 배출되는 배기가스를 산출하였다.

  • PDF

KISA 초대석 - 영원한 무재해 발전소로 기억될 것 - 한국중부발전(주) 서울화력발전소 박형구 소장

  • Im, Dong-Hui
    • The Safety technology
    • /
    • no.178
    • /
    • pp.24-25
    • /
    • 2012
  • 한국중부발전(주) 서울화력발전소는 당인리발전소로 잘 알려진 우리나라 최초의 화력발전소다. 제4호기(137,500kW)가 준공된 1971년 당시에는 서울시 전력수요의 75%를 담당하는 등 우리나라 산업발전의 견인차 역할을 해왔다. 현재는 제4, 5호기 총 설비용량 387,500kW로 수도권 전력 공급의 중추적인 역할을 해오고 있는 것은 물론, 국내 최초 열병합발전소로서 여의도, 동부이촌동, 반포, 마포 지역의 5만 여 세대에 난방열과 온수를 공급하고 있다. 이외에도 1993년부터는 발전연료로 사용해온 유류를 천연가스로 전환하고, 2002년에는 질소산화물 저감설비를 설치해 대기환경오염 수치를 10분의 1로 낮추는 등 에너지 절약 및 환경보전에 대한 노력도 꾸준히 펼치고 있다. 이와 같이 우리나라 최고의 화력발전소로서 명성을 이어온 이곳은 지난 1980년 11월 7일부터 무재해를 이어오면서 무재해 23배수와 무재해일수 11,591일이라는 대기록을 달성했다. 이는 무재해 운동을 벌이고 있는 기업들 중 최장의 무재해기록이기도 하다. 그렇다면 이곳은 어떤 활동을 통해 무재해 사업장의 명맥을 이어나갈 수 있었을까. 한국중부발전(주) 서울화력 발전소의 박형구 소장을 만나 이야기를 나눠봤다.

  • PDF

A Study on Combustion Flow Characteristics in A Heavy-Duty Diesel Engine Equipped with EGR (대형디젤기관에서 EGR 적용시 연소유동해석)

  • Baik, Doo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.784-787
    • /
    • 2006
  • Even if EGR is known as a technology which dramatically reduces NOx emission, its application is a quite complicate since it affects fuel economy and increase of PM emission. Therefore, it is a very important issue to investigate an optimal EGR rate considering all engine parameters. This research was numerically conducted to predict combustion and emission characteristics with respect to various EGR rates.

  • PDF

Study of Combustion Characteristics with Compression Ratio Change in Ultra-Lean LPG Direct Injection Engine (압축비 변화에 따른 초희박 직접분사식 LPG엔진의 연소특성 연구)

  • Cho, See Hyeon;Yoon, Jun Kyu;Park, Cheol Woong;Oh, Seung Mook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.837-844
    • /
    • 2014
  • Automotive manufacturers have recently developed various technologies for improving fuel economy and satisfying enhanced emission regulations. The ultra-lean direct injection engine is a promising technology because it has the advantage of improving thermal efficiency through the deliberate control of ignition. A conventional LPG engine has been redesigned to an ultra-lean-burn LPG direct injection engine in order to adopt combustion system of ultra-lean-burn. This study is aimed at investigating the effect of a change in the compression ratio on the performance and emission characteristics of a lean-burn LPG engine. The fuel consumption, heat release rate, combustion pressure, and emission characteristics are estimated depending on changing the effect of compression ratio. When the compression ratio is increased, it is difficult to improve the fuel consumption owing to an unstable combustion state, but the total hydrocarbon and nitrogen oxide emissions are reduced.

An Experimental Study of Combustion Characteristics in a Model Gas Turbine Combustor (모형 가스터빈 연소기의 기초 연소특성에 대한 실험적 연구)

  • Lee, Jang-Su;Kim, Min-Ki;Park, Sung-Soon;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.263-266
    • /
    • 2009
  • The mainly objectives of this study was a combustion dynamics and instability characteristics in a model gas turbine dump combustor which is the scale down of GE 7FA+e DLN 2.6 gas turbine combustor. Model gas turbine injector has 2-stage swirl vane and it’s reduced 1/3 size of the original one. The shape of plenum and combustor were designed for similar acoustic characteristics. Inlet air was preheated to $200{\sim}400^{\circ}C$. The flow velocity at mixing nozzle was 30 to 75 m/s and equivalent ratio was 0.4 to 1.2. The combustor length was varied for different acoustic characteristics to $375{\sim}700\;mm$. As the result, this research have been show the combustion instability was observed at lower equivalence ratios ($\Phi$ < $0.5{\sim}0.6$) and higher equivalent ratios ($\Phi$ > $1.1{\sim}1.2$).

  • PDF

Effect of Multiple Injection on the Performance and Emission Characteristics of Lean Burn Gasoline Direct Injection Engines (다단분사가 초희박 GDI 엔진의 성능 및 배기에 미치는 영향)

  • Oh, Jin-Woo;Park, Cheol-Woong;Kim, Hong-Suk;Cho, Gyu-Baek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.137-143
    • /
    • 2012
  • Currently, in order to meet the reinforced emissions regulations for harmful exhaust gas including carbon dioxide ($CO_2$) as a greenhouse gas, technologies for reducing $CO_2$ emission and fuel consumption are being developed. Gasoline direct injection (GDI) systems have the advantage of improved fuel economy and higher power output than port fuel injection gasoline engine systems. The aim of this study is to examine the performance and emission characteristics of a lean burn GDI engine equipped with spray-guided-type combustion system. Stable lean combustion was achieved with a late fuel injection strategy under a constant operating condition. Further improvement in specific fuel consumption is possible with the introduction of multiple fuel injection strategies, which also increases hydrocarbon (HC) and nitrogen oxide ($NO_x$) emissions and decreases carbon monoxide (CO) emission.

Effects of Biodiesel Fuel on Characteristics of Specific Fuel Consumption and Exhaust Emissions in DJ Diesel Engine;Using Rape Oil (직접분사식 디젤기관에서 연료소비율 및 배기배출물 특성에 미치는 바이오디젤유의 영향;유채유를 중심으로)

  • Lim, J.K.;Choe, S.Y.;Cho, S.G.
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.133-137
    • /
    • 2007
  • An experimental study is conducted to evaluate and compare the use of BiodieseDI Fuel supplements at blend ratio of 10/90(BDF10) and 20/80(BDF20), in four stroke, direct injection diesel engine located at the authors' laboratory. especially this Biodiesel is produced from Rape oil at the authors' laboratory. The tests are conducted using each of the above fuel blends, in the engine working at a speed of 1800rpm and at a various loads. In each test, specific fuel consumption, exhaust emissions such as nitrogen oxides(NOx), carbon monoxide(CO) and Soot are measured. The results of investigation at various operating conditions are as follows (1) Specific fuel consumption is increased average 1.52%, maximum 1.84% at load 25% in case of BDF10, and average 1.98%, maximum 2.80% at load 25% in case of BDF20. (2) CO emission is decreased average 5.14%, maximum 6.09% at load 0% in case of BDF10, and average 7.75%, maximum 9.13% at load 0% in case of BDF 20. (3) NOx emission is increased average 2.97%, maximum 3.74% at load 0% in case of BDF10, and average 3.84%, maximum 4.67% at load 0% in case of BDF20. (4) Soot emission is decreased average 9.36%, maximum 10.85% at load 75% in case of BDF10, and average 11.99%, maximum 13.95% at load 75% in case of BDF20.

  • PDF

Characteristics of Acidic Gas Emissions from Combustion with Preblending of Coal and Sludge (석탄과 슬러지의 예혼합연소에 따른 산성가스 배출특성)

  • Shim, Sung-Hoon;Jeong, Sang-Hyun;Min, Hyo-Ki;Lee, Sang-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.103-108
    • /
    • 2014
  • Using dried sludge as a secondary fuel of a coal-fired power plant is proposed as an alternative option for sludge disposal. Because elemental contents of sludge are different from those of coal, different levels of acidic gas emissions are expected from the co-combustion of sludge with coal. In this study, sludge samples were obtained from 7 sewage treatment plants in Korea. Each sludge sample was combusted together with coal in a lab-scale combustor, and the concentrations of nitrogen oxides ($NO_x$), sulfur dioxide ($SO_2$), hydrogen chloride (HCl), chlorine ($Cl_2$) in the flue gas were analyzed. Compared to the combustion of coal only, $NO_x$ concentration was slightly higher in the flue gas from the co-combustion of coal and sludge. $SO_2$ emission increased with the combustion of sludge due to the higher content of sulfur in sludge than in coal. For most of the tested samples, the concentrations of HCl and $Cl_2$ were varied depending on the chlorine content in the sludge sample.

Numerical study on effect of intake valve timing on characteristics of combustion and emission of Natural gas-Diesel engine (발전용 천연가스-디젤 혼소 엔진의 흡기밸브 개폐시기에 따른 연소 및 배출 특성에 대한 수치 해석적 연구)

  • Jung, Jaehwan;Song, Soonho;Hur, Kwang beom
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.29-36
    • /
    • 2016
  • In this study, diesel/natural gas dual-fuel engine was studied numerically using DoE method. The engine is CI engine for power generation and modelled by 1-D simulation GT-power. The combustion and emission characteristics were analyzed as a function of IVO, IVC and the ratio of natural gas to total fuel enegy. As the proportion of natural gas increases, the BSFC(Brake specific fuel consumption) is increased and BSNOx(Brake specific NOx) is decreased. If specific valve timing to improve the BSFC is applied to the engine, the BSFC is decreased by 1% and simultaneously BSNOx is decreased by 36%.

Development of a 30 kW Hydrogen-Fueled Micromix Combustor for Research (연구용 30 kW 수소 전소 마이크로믹스 연소기 개발)

  • Seojun Ock;Minsu Kim;Suhyeon Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.72-81
    • /
    • 2023
  • Hydrogen-fueled gas turbines are a promising technology that can resolve the carbon dioxide emission issue as future aviation propulsion engines and carbon-free power generations. To achieve high efficiency and stability of gas turbines using 100% hydrogen as fuel, an innovative design of combustor systems is necessary to consider the characteristics of hydrogen, which are different from those of conventional hydrocarbon fuels. Micromix is a combustor design method, which aims to terminate the reaction quickly by intense mixing of fuel and air, consequently reducing NOx and increasing the stability. In this paper, we examine the principles and design process of micromix combustors as a pure-hydrogen combustion technology, and we introduce a design of a 30 kW micromix hydrogen combustor for research.