• Title/Summary/Keyword: 연료 NOx

Search Result 532, Processing Time 0.022 seconds

Numerical Analysis for Booster Effect in DME HCCI Engine with Fuel Stratification (연료의 불균질성을 갖는 DME HCCI엔진에서 과급의 효과에 관한 수치해석)

  • Kwon, O-Seok;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.19-25
    • /
    • 2010
  • The purpose of this study is to gain a better understanding of the effects of fuel stratification on reducing the pressure-rise rate at high load in HCCI combustion. It was found that fuel stratification offers good potential to achieve a staged combustion event and reduced pressure-rise rates. The engine is fueled with Di-Methyl Ether (DME) which has unique 2-stage heat release. Numerical analysis is conducted with single and multi-zones model and detailed chemical reaction scheme is done by chemkin and senkin. Calculation result shows that proper fuel stratification prolongs combustion duration and reduce pressure rise rate. Besides IMEP, combustion efficiency and indicated thermal efficiency keep constant. However, too wide fuel stratification increases pressure rise rate and CO and NOx emissions in exhaust gas.

A Study on the Combustion Characteristics of Petrochemical Process By-Product (석유화학 공정부산물의 연소특성에 대한 연구)

  • Lee, Yong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1578-1584
    • /
    • 2002
  • Combustion stability is one of the most important factors that must be considered in burning of heavy fuel oil, especially low-grade oil. This paper describes the combustion characteristics of petrochemical process by- product in the combustion furnace of heavy fuel oil. Main experimental parameters were combustion load, excess 02, fuel preheating temperature and air/fuel ratio. The capacity of CRF(combustion research facility) used in this study was 1.0 ton/hr and the burner is steam jet type suitable far heavy oil combustion and manufactured by UNIGAS in Italy. The fuel used in this experiment were 0.5 B-C, petrochemical process by-product and 3 kinds of 0.5 B-C/process by-product mixtures. The combustion stability was monitored and exhaust gases such as CO, NOx, SOx and particulates were measured with the excess $O_2$ and combustion load. The main purpose of this study is to clarify whether process by-product can be used as a boiler fuel or not in consideration of flame stability and emission properties.

Impact of experience on government policy toward acceptance of Hydrogen fuel cell vehicles (정부정책에 대한 경험이 수소 연료전지 자동차의 수용에 미치는 영향)

  • Gang, Min-Jeong;Park, Hui-Jun
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2010.04a
    • /
    • pp.465-470
    • /
    • 2010
  • Korea government declared that "low carbon, green growth" through green technologies and clean energy to be the new national vision for the next 60 years(President's Liberation Day speech on Aug. 15, 2008). And succeeding "Green New Deal" plan involves nine core projects including energy saving, recycling, clean energy development. It is because hydrogen fuel cell vehicles, using electricity from chemical reaction of hydrogen and oxygen, let out water which is a by-product of such chemical reaction instead of emitting harmful particulate and gases such as NOX, SOX and CO2 that hydrogen fuel cell vehicles and its technology are drawing public attention as one of the sensible solutions in accomplishing "low carbon, green growth" agenda. Nevertheless There are many chances that let the people have a practical experience of hydrogen fuel cell vehicles. Sometimes new products, including hydrogen fuel cell vehicles, made by advanced technology can not penetrate through the market when it faces public skepticism that is stimulated from lack of knowledge and experience. That is the reason why not only cost benefit analyses and scientific risk assessments but also public acceptance studies toward hydrogen fuel cell vehicles have to be performed [Schulte, 2004]. This research address a need for comprehensive study on factors influencing public acceptance of hydrogen fuel cell car, specifically focusing on impacts of personal experience related to governmental science and technology policy toward public acceptance.

  • PDF

선박 디젤엔진용 스크러버 시스템의 파일롯 실험 연구

  • Lee, Seong-Yeong;Park, Jae-Hyeon;Park, Chan-Do;Yang, Hui-Seong;Go, Jun-Ho;Song, Seok-Yong;Lee, Jae-U;Ryu, Seung-Ho;An, Gwang-Heon
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.44-44
    • /
    • 2011
  • 디젤 엔진 배기가스 중의 황산화물(SOx)은 산성비의 원인이 될 뿐 아니라 인체에 대해서도 상당히 치명적인 위험을 초래하는 성분으로 지금까지는 다른 오염물질인 질소산화물 (NOx), 입자상 물질(particulate matter) 등에 비해서 상대적으로 덜 주목을 받아왔다. 국제적인 황산화물 배출규제의 경우, '황산화물 배출규제지역' (SECA : SOx Emission Control Area)에 대해 엄격한 배출규제가 시행되고 있는데, 대부분 황함량을 1.5%이하의 연료를 사용하거나, 후처리 설비를 설치해서 배기가스 중의 황산화물을 6.0g/kWh 이하로 유지하도록 규정하고 있다. 따라서 본 연구에서는 강화되고 있는 디젤엔진 배기가스 중의 황산화물과 입자상 물질을 저감하기 위한 설비로서, 높은 경제성 및 신뢰성 등의 장점으로 인해 선정 가능성이 가장 높은 스크러버 시스템에 대해 독자모델 설계를 수행하였으며 파일롯 설비를 활용한 실제 디젤엔진에 대한 실험을 통하여 운전조건에 따른 제거효율, 발생되는 처리수의 성분, 그리고 디젤엔진 운전에 영향을 미치는 압력손실 등에 대한 데이터를 확보함으로써 실제 선박적용에 대한 가능성을 확인하였다.

  • PDF

The Effect of the Excess Air Factor on the Emission Characteristics of the SI Engine Fueled with Gasoline-Ethanol and Hydrogen Enriched Gas (공기과잉률의 변화가 에탄올 및 수소농후가스 혼합연료 기관의 배기 특성에 미치는 영향)

  • Park, Cheol-Woong;Choi, Young;Oh, Seung-Mook;Kim, Chang-Gi;Lim, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.334-342
    • /
    • 2009
  • Trends in the automotive market require the application of new engine technologies, which allows for the use of different types of fuel. Since ethanol is a renewable source of energy and has lower $CO_2$ emissions than gasoline, ethanol produced from biomass is expected to be used more frequently as an alternative fuel. It is recognized that for spark ignition (SI) engines, ethanol has the advantages of high octane number and high combustion speed. Due to the disadvantages of ethanol, it may cause extra wear and corrosion of electric fuel pumps. On-board hydrogen production out of ethanol is an alternative plan. This paper investigates the influence of ethanol fuel on SI engine performance, thermal efficiency and emissions. The combustion characteristics with hydrogen-enriched gaseous fuel from ethanol are also examined. As a result, thermal efficiency increase compared to gasoline. Also, reductions in $CO_2$, NOx, and THC combustion products for ethanol vs. gasoline are described.

Emulsion Stability of Water/Oil Emulsified Fuel by associated with Emulsifiers (유화제 종류에 의한 Water/Oil 에멀젼 연료의 유화 안정성)

  • Kim, Moon-Chan;Lee, Chang-Suk;Park, Hea-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.395-403
    • /
    • 2008
  • In this study, the characteristics of emulsified fuel were studied. The emulsified fuel which was composed of water and diesel was manufactured by using homogenizer and ultrasonic generator. The more the percentage of water contents increases, the more the density increases to the emulsified fuel. However, the viscosity increased in the 60% of water contents and decreased in the 70% of water contents because the O/W type was formed. The 3 minutes's ultrasonic waves during the irradiation time was appropriate of 16,000 rpm. And the energy density of ultrasonic waves was 87.5J/g. The emulsion stability has improved in the lower temperature, the lower percentage of water contents, and the most stable emulsion state was obtained from 20%(w/w) of water contents. Also, the emulsion stability was related to the HLB values of emulsifiers. Especially, the HLB values of emulsifier were appropriate from 4 to 7 values.

Phase-resolved CARS Temperature Measurements in a Lean Premixed Gas Turbine Combustor;Effect of fuel/air mixing on phase-resolved gas temperature (CARS를 이용한 희박 예혼합 가스터빈 연소기내 온도 측정(1);연료/공기 혼합정도가 위상별 온도에 미치는 영향)

  • Moon, Gun-Feel;Lee, Jong-Ho;Park, Chul-Woong;Hahn, Jae-Won;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.97-102
    • /
    • 2003
  • Experimental investigations were carried out in an atmospheric pressure, optically accessible and laboratory-scale dump combustor operating on natural gas. The objective of this study is to obtain the phase-resolved gas temperatures at different phases of the oscillating pressure cycle during unstable combustion. CARS temperature measurements were made at several spatial locations under lean premixed conditions to get the information on temperature field within the combustor. Also the effect of incomplete fuel-air mixing on phase-resolved temperature fluctuation was investigated. Results including phase-resolved averaged temperature, normalized standard deviation and temperature probability distribution functions (PDFs) were provided in this paper. Temperature PDFs give an insight on the flame behavior. And strong correlation between phase-resolved temperature profile and pressure cycle was observed. Results of the phase-resolved high temperature give an additional information on the perturbation of equivalence ratio at flame as well as the effect of mixing quality on NOx emission characteristics.

  • PDF

The Four Power Plants Field Demonstration Research on Combustion Characteristic of the Bio Oil for Fuel Switching (국내 4개 중유발전소 실증실험을 통한 발전연료 대체용 바이오중유의 연소특성 연구)

  • Baek, Sehyun;Kim, Hyunhee;Park, Hoyoung;Kim, Young Joo;Kim, Tae Hyung;Ko, Sung Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.1
    • /
    • pp.15-23
    • /
    • 2015
  • This paper presents the results of field demonstration for fuel switching to bio-fuel oil in 4 commercial heavy oil fired power plants. The 100% fuel switching field demonstration was successfully carried out in two tangential-firing boilers at a capacity of 75 and 100 MWe respectively without major equipment retrofit, and also 25% bio-fuel oil blending for two opposite firing boilers at a capacity of 350 and 400 MWe respectively. Despite the low density and heating value, the bio fuel was successfully replaced heavy fuel oil at the full load by only adjusting operational parameters. Incase of bio fuel oil combustion, heat absorption of radiative heat transfer section was reduced while convection section has opposite trend. In pollutants emission, a major reductionin SOx as well as 10-20% reduction in NOx were achieved by the fuels witching. On the other hand, boiler efficiency was slightly underestimated.

The Effect of Control of Low Temperature Oxidation using DME-gasoline Fuel Mixture on the HCCI Combustion (저온산화반응 제어가 DME-가솔린 혼합연료의 HCCI 연소에 미치는 영향)

  • Park, Youngjin;Lim, Ocktaeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.83-90
    • /
    • 2014
  • The main purpose of the study is to investigate the ideal manner and ratio to inject gasoline and DME simultaneously into intake port, and moreover to confirm the characteristics of combustion and emission of engine. Experimental conditions are 1200 rpm, compression ratio 8.5, intake air temperature (383 K). Internal cylinder pressure was collected to confirm the characteristics of combustion in order to calculate the heat release rate in the cylinder. In addition, HORIBA (MEXA 7100) which was possible analyzing emissions (NOx, CO, HC) was used. Vanguard gasoline engine (23HP386447) was used in this experiment. The result show that fuel design (DME-Gasoline) leads to the decrease of low temperature heat release, which is a benefit for higher-load on the HCCI engine. Also, IMEP and the indicated thermal efficiency increase with combustion-phasing retard, and these observations can be explained by considering the control of low temperature oxidation of DME.

A Basic study on the Evaporative Diesel Spray with Visible Measurement (가시화 측정을 이용한 증발디젤분무의 기초 연구)

  • Yeom, J.K.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.20-26
    • /
    • 2009
  • 디젤기관에서 배출되는 유해배출성분인 NOx(Nitrogen oxides)와 PM(Particulate matter)은 기관 실린더내의 혼합기 분포에 의해 그 생성이 지배된다. 이 때문에 그 유해배출물들을 저감하기 위해서는 연소의 전단계인 혼합기 분포 및 그 생성과정의 해석은 매우 중요하다. 디젤기관에서 노즐로부터 분사된 연료는 주위기체와 혼합기를 형성하는 과정에서 액체에서 기체로 상변화를 동반한다. 따라서 분무의 혼합기형성과정을 해석하기 위해서는 액상과 기상을 동시에 분리하여 계측하는 것이 필요하다. 그러므로 본 연구에서는 디젤분무를 대상으로 Melton 등이 제안한 엑시플렉스(Exciplex) 형광법을 이용하여, 분무의 액상과 기상을 동시에 2차원분리해서 가시화촬영을 행하였다. 그 엑시플렉스 형광법을 이용하여 획득한 이미지에 화상 응용해석을 실시하여 비정상증발디젤분무의 혼합기형성과정에 대한 정보를 얻고자 하였다. 엑시플렉스 형광법을 이용해서 증발분무의 거동측성을 해석한 결과 프랙틸해석을 이용한 분무 흐트러짐(Disturbance)의 평가에서 플랙틸차원은 분사압력의 변화에 관계없이 하나의 값, 약 1.1로 정리 할 수 있고, 그 결과 각 분사압력에 대한 분무 기상외곽곡선(외주)은 거의 동일한 정도의 요철형상을 갖는다.

  • PDF