• Title/Summary/Keyword: 연료 증기분포

Search Result 11, Processing Time 0.011 seconds

Fuel Concentration and Flame Temperature Distribution in Model Gas Turbine Combustor with Various Spray Angles (모형가스터빈 연소기에서 분무각 변화에 따른 연료농도 및 화염온도 분포)

  • Hwang, Jin-Seok;Byun, Yong-Woo;Seong, Hong-Gye;Koo, Ja-Ye;Kang, Jeong-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.1011-1016
    • /
    • 2008
  • Jet-A spray and combustion were numerically analyzed in annular type combustor model using KIVA3V. The combustor geometry have 6 dilute holes. Swirl effect and thermal NO were considered in this investigation to analyze mixing and combustion characteristics. Fuel vapor, flame temperature, NO generation were investigated for various spray angle. As increase of spray angle, Jet-A vapor appeared uniformly in primary zone and evaporation rate was increased. Mixing between fuel vapor and ambient gas was enhanced as increase of spray angle. As a result, high temperature region appeared widely and thermal NO generation rate was increased.

The Effect of Liquid Water in Fuel Cell Cathode Gas Diffusion Layer on Fuel Cell Performance (가스 확산층(GDL)내부의 물이 연료전지 성능에 미치는 영향)

  • Park, Sang-Kyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.374-380
    • /
    • 2015
  • In this paper, a dynamic model describing the 2 phase effect on the gas diffusion layer depending on load change of a fuel cell stack was developed to examine the effects of liquid water in fuel cell cathode gas diffusion layer on the fuel cell performance. For the developed model, 2 phase effect on the performance of a fuel cell stack depending on the load changes, concentration distribution of water vapor and oxygen inside a gas diffusion layer, the effect of the thickness and porosity of the gas diffusion layer on the fuel cell stack voltage were examined. As a result, a fuel cell stack voltage for the 2 phase model within the scope of the research become lower than that for the 1 phase model regardless of the load. Although oxygen molar concentration for the gas diffusion layer adjacent to the catalyst layer was the lowest, water vapor concentration is the highest. In addition, as thickness and porosity of the gas diffusion layer increased and decreased, respectively, the fuel cell stack voltage decreased.

Propose an Analysis Model of Evaporation Process in Multi-Component Fuel Spray (다성분연료 분무에 있어서 증발과정의 해석모델 제안)

  • Yeom, Jeong-Kuk;Tanaka, Tomoyuki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.373-380
    • /
    • 2009
  • The evaporation process of multi-component fuel is different from one of a single component, because the properties of each component affects among the components. In actual engine, the spatial distribution of fuel vapor concentration dominates auto-ignition and initial combustion, and depends on the volatility and diffusivity of each component fuel contained in the multi-component fuel. Then, this study proposes a simplified numerical scheme for analysis of evaporation process of multi-component fuel sprays. Evaporation process is calculated by KIVA-II code based on the simple two-phases region that is approximated by modified saturated liquid-vapor line, which was obtained by connecting the 50% distillation temperature for each component under several pressure fields. Consequently, it can be quantitatively simulated that vapor of low boiling fuel component mostly exists around nozzle and spray tip region, the high boiling duel component, on the other hand, mostly appears near the spray tip.

NOx Formation Characteristics of Fuel Staged Gas Turbine Combustor (단계적 연료공급 가스터빈 연소기의 NOx 발생특성)

  • Lee, Chan;Lee, Han-Goo;Kang, Seung-Jong
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.05a
    • /
    • pp.15-21
    • /
    • 1994
  • 단계적 연료방식을 가지는 가스터빈 연소기의 해석을 위한 방법을 제안하였으며, 이를 바탕으로 연료배분방식에 따른 연소기의 연소 및 NOx 발생특성을 규명하였다. 연소기 해석모델은 연소기 내부를 선회기구역, 1차연소구역, 재순환구역, 2차연소구역 및 희석구역으로 나누어 각각의 반응구역을 혼합반응기, 플러그 유동반응기의 모델로서 근사하였다. 반응기내의 연소 및 NOx 생성반응은 천연가스 반응모델과 Zel'dovich 의 NOx 모델을 이용하여 예측하였다. 본 해석방법을 이용하여, 각 반응구역에 유입되는 연료량이 연소기내 연소특성, NOx 발생 특성 및 온도분포에 미치는 영향을 검토하였다. 또한, NOx 저감을 위해 증기분사를 사용하는 경우에 분사위치가 NOx 발생에 미치는 영향을 분석하여, 가스터빈 연소기설계에 필요한 기초자료를 제공하였다.

  • PDF

Numerical analysis on the characteristics of disel spray for variation of injection spray angle and swirl ratio. (분사각 및 스월 변화에 따른 디젤분무의 특성에 관한 수치 해석)

  • Jung H.;Cha K. S.;Park C. G.
    • Journal of computational fluids engineering
    • /
    • v.5 no.3
    • /
    • pp.1-7
    • /
    • 2000
  • In high-pressure diesel engine, the injected fuel spray impinges on the piston cavity surface due to the short distance between the injection nozzle and the cavity wall. The behavior of the impinging spray has the great influence on the dispersion of fuel, the evaporation, and the mixture formation process. In this study, the numerical simulation using the GTT code was performed to study the gas flows, the spray behaviors, and the fuel vapor distributions in the combustion of a D.I engine for variation of spray angle and swirl ratio.

  • PDF

The Study on the Fuel Vapor Distribution of Homogeneous Charge in a DISI Engine with a 6-Hole Fuel Injector (6공 연료분사기를 장착한 DISI 엔진 내 균질급기의 연료증기 분포 특성)

  • Kim, S.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.5-10
    • /
    • 2011
  • The spatial fuel vapor distribution of the homogeneous charge by a 6-hole injector was examined in a optically accessed single cylinder direct injection spark ignition(DISI) engine. The effects of in-cylinder charge motion, and fuel injection pressure, and coolant temperature were investigated using a planar LIF (Laser Induced Fluorescence) technique. It was confirmed that the in-cylinder tumble flow played a little more effective role in the spatial fuel vapor distribution than the swirl flow during the compression stroke at 10 mm and 2 mm planes under cylinder head gasket and the increased fuel injection pressure activated spatial distributions of the fuel vapor. In additions, richer mixtures were concentrated around the cylinder wall by the increase of the coolant temperature.

A Numerical Study on the In-cylinder Flow and Fuel Distribution with the Change of Intake Valve Lift in a GDI Engine (GDI 엔진의 밸브리프트 변화에 따른 연소실내 흡기유동 및 연료분포에 대한 수치 해석적 연구)

  • Kim, K.B.;Song, M.J.;Kim, K.S.;Kang, S.H.;Lee, Y.H.;Lee, S.W.
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.100-105
    • /
    • 2013
  • While variable valve actuation or variable valve lift (VVL) is used increasingly in spark ignition (SI) engines to improve the volumetric efficiency or to reduce the pumping losses, it is necessary to understand the impact of variable valve lift and timing on the in-cylinder gas motions and mixing processes. In this paper, characteristics of the in-cylinder flow and fuel distribution for various valve lifts (4, 6, 8, 10 mm) were simulated in a GDI engine. It is expected that the investigation will be helpful in understanding and improving GDI combustion when a VVL system is used. The CFD results showed that a increased valve lift could significantly enhance the mixture and in-cylinder tumble motion because of the accelerated air flow. Also, it can be found that the fuel distribution is more affected by earlier injection (during intake process) than that of later injection (end of compression). These may contribute to an improvement in the air-fuel mixing but also to an optimization of intake and exhaust system.

Numerical Analysis of Sprays in the Combustion Chamber of Diesel Engine (디젤 분무 거동에 관한 수치 해석적 연구)

  • Cha K. S.;Choi J. W.;Park C. G.
    • Journal of computational fluids engineering
    • /
    • v.5 no.1
    • /
    • pp.8-13
    • /
    • 2000
  • In this study, the spray models incorporated into the GTT code were tested for sprays injected in quiescent swirling gases and for the sprays impinging on a flat wall, and the validity of the models has been confirmed by comparing the calculated results with the experimental data. Using this code, the gas flow, spray behavior and fuel vapor distributions in the combustion chamber of a D.I engine have been numerically analyzed with respect to the constant injection pressure and the injection pressure varying with injection time.

  • PDF

Study on the Combustion Characteristics of a Small-Scale Orimulsion Boiler (소형 오리멀젼 보일러의 연소특성 연구)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Choi, Young-Chan;Lee, Jae-Gu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1081-1089
    • /
    • 2005
  • In order to examine the application feasibility of Orimulsion fuel in a commercial boiler using heavy fuel oil, a numerical and experimental research efforts have been made especially to figure out the fundamental combustion characteristics of this fuel in a small-scale boiler. One of the notable combustion features of Orimulsion fuel is the delayed appearance of flame location with the flame shape of rather broad distribution, which is found experimentally and confirmed by numerical calculation. This kind of flame characteristics is considered due to the high moisture content included inherently in the process of Orimulsion manufacture together with micro-explosion by the existence of fine water droplets. In order to investigate the effect on the combustion characteristics of Orimulsion, a series of parametric investigation have been made in terms of important design and operational variables such as injected amount of fuel, types of atomization fluid, and phonemenological radiation model employed in the calculation, etc. The delayed feature of peak flame can be alleviated by the adjustment of the flow rate of injected fuel and the generating features of CO, $SO_2$ and NO gases are also evaluated in the boiler. When the steam injection as atomizing fluid is used, the combustion process is stabilized with the reduced region of high flame temperature. In general, the calculation results are physically acceptable and consistent but some refinements of phenomenological models are necessary for the better resolution of pollutant formation. From the results of this small-scale Orimulsion boiler, it is believed that a number of useful information are obtained with the working computer program for the near future application of Orimulsion fuel to a conventional boiler.

The Experimental Studies of Vacuum Residue Combustion in a Small Scale Reactor (소규모 반응로를 이용한 감압 잔사유지 연소실험)

  • Park Ho Young;Kim Young Ju;Kim Tae Hyung;Seo Sang Il
    • Journal of Energy Engineering
    • /
    • v.14 no.4 s.44
    • /
    • pp.268-276
    • /
    • 2005
  • Vacuum Residue (VR) combustion tests were carried out with a 20 kg/hr (fuel feed rate) small scale reactor. The nozzle used was a steam atomized, internal mixing type. Compared to heavy oil, vacuum residue used in this work is extremely high viscous and contains high percentages of sulfur, carbon residue and heavy metals. To ignite atomized VR particles, it was necessary to preheat the reactor, and it has been done with LP gas. The axial and radial gas temperature, major species concentrations and solid sample were analyzed when varying the fuel feed rate. The main reaction zone of atomized VR-air flame in a reactor was anticipated within about 1 m from the burner tip by considering the profiles oi gas temperature, species concentration and particle size measured along with the reactor. At downstream, the thermally, fully developed temperature distribution was obtained. SEM photographs revealed that VR carbon particles collected from the reactor are porous and have many blow-holes on the particle surface.