• Title/Summary/Keyword: 연료 절감

Search Result 380, Processing Time 0.023 seconds

A Study on the Devitrification of Container Glass with the Amounts of Cullet (유리 용기 생산시 Cullet의 사용에 관한 연구)

  • Noh, Kwang-Hong;Kim, Jong-Ock;Kim, Taik-Nam;Lim, Dae-Young;Park, Won-Kyu;Lee, Chae-Hyun
    • The Journal of Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.199-205
    • /
    • 1998
  • Cullet Quality Control in auto glass bottle factory is the most important in recent days because of the increasing cost of materials in glass bottle. Since the composition of plate glass cullet is similar, the cullet quality using plate cullet in glass bottle factory is easily controlled. In addition to this, the price of plate glass cullet is so low that the cost reduction can be achieved. If the ratio of plate glass cullet and gush is over 25%, the liquidity of glass water become worse, which is caused by different compositions and viscosity of the components. As a results, Furnace bottom temperature becomes low and glass water becomes inhomogeneous. Thus production efficiency of glass bottle becomes low because of increasing devitrification in Dead Corner part in glass melting furnace. Three experimental methods – (1) increasing melting temperature, (2) using Booster, (3) using bubbler – were performed to increase the furnace bottom temperature and glass water homogeneity. The amounts of plate glass cullet was able to increase up to 90%, 70% and 60% without any devitrification using booster, bubbler and the method of glass melting temperature increase from $1480^{\circ}C$ to $1560^{\circ}C$ respectively. It is not possible to increase the glass melting temperature without the reduction of furnace operation time and the increase of fuel cost. The booster process has disadvantage of much electric energy consumption. Since the bubbler process uses physical convection of melting glass based on compression air, the homogeneity of molten glass is not so good as that of booster process but it can reduce the cost of glass bottle.

  • PDF

Heating Performance of Hot Water Supplying System in Greenhouse (온수배관을 이용한 온실의 난방성능)

  • Yoon, Yong-Cheol;Shin, Yik-Soo;Kim, Hyeon-Tae;Bae, Seoung-Beom;Choi, Jin-Sik;Suh, Won-Myung
    • Journal of Bio-Environment Control
    • /
    • v.21 no.2
    • /
    • pp.79-87
    • /
    • 2012
  • This research was conducted to obtain basic data with regard to the heating performance that would be produced by installing an aluminum hot water pipe inside the greenhouse with the goal of reducing the heating energy in greenhouse. The research results are summarized as follows. The degree of difference in relation to the temperature by height within the greenhouse during the entire experiment was significant - within the range of 4.0~$7.0^{\circ}C$. The temperature difference between incoming and outgoing water was about $3.3^{\circ}C$ greater when FCU was activated compared to when it was not activated. Meanwhile, the amount of energy consumed increased about 36.2~40.1%. The amount of pyrexia per hour also increased by 44.6~52.0%. During the experiment period, circulated flux was within the range of 0.48~$0.49L{\cdot}s^{-1}$ while average fluid speed was 1.53~$1.56m{\cdot}s^{-1}$. The average temperature difference between incoming and outgoing water was 6.24~$11.50^{\circ}C$. The amount of heating value by each set temperature within the minimum outdoor temperature range of -14.0~$-0.6^{\circ}C$ was 135,930~307,150 kcal, and the range was within the 9,610~$19,630kcal{\cdot}h^{-1}$ per hour. This demonstrated that about 23~53% heating energy of the maximum heating load could be supplied. Total radiating value and amount of energy consumed were 2,548,306 kcal and 3,075.7 kWh, respectively. When heating takes place using oil, which is a fossil fuel, the total amount of light oil consumed was 281.6 L while the cost was 321,000 won. When the electricity cost for farms is applied, the total cost was about 110,730 won, which is about 33.5% of the cost required compared to oil consumption. The temperature at in the experiment area was about 8.3~$14.6^{\circ}C$ higher compared to that of the control area.

Characteristics of bioethanol production using sweet sorghum juice as a medium of the seed culture (단수수 착즙액이용 배양종균의 바이오에탄올 생산 특성 연구)

  • Cha, Young-Lok;Moon, Youn-Ho;Yu, Gyeong-Dan;Lee, Ji-Eun;Choi, In-Seung;Song, Yeon-Sang;Lee, Kyeong-Bo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.627-633
    • /
    • 2016
  • Sweet sorghum [Sorghum bicolor (L)] is one of the major crops for biofuels such as sugarcane and sugar beet which raw materials rich in saccharide. Sweet sorghum juice was extracted from the stem. It's composed of fermentable sugars such as glucose, fructose and sucrose. Ethanol from the extracted sweet sorghum juice can be easily produced by yeast fermentation process. Sweet sorghum juice is consisted of not only sugars but also various nutrients like nitrogen and phosphate. For commercial production of bioethanol, seed culture is one of the important parts of fermentation, so that optimal culture medium should be selected for the reduction of processing costs. In this study, sweet sorghum juice was estimated as a culture medium for seed culture of cellulosic bioethanol. For the comparison of cultures with various substrates, it used YPD including each 5 g/L yeast extract and peptone, sweet sorghum juice and hydrolyzed Miscanthus was taken part in the culture with 2%, 5% and 10% sugar conditions. Based on media of YPD and sweet sorghum juice, cell-mass concentration was obtained maximum more than $2.5{\times}10^8CFU/mL$ after 24 h of cultivation. Consequently sweet sorghum juice is suitable for the cell culture with more than $1.0{\times}10^8CFU/mL$ after 12 h of cultivation. This can be used as a culture medium for the cellulosic bioethanol industry.

Studies on the Tissue Culture of Some useful woody species (유용수종(有用樹種)의 조직배양(組織培養)에 관(關)한 연구(硏究))

  • Kim, Jai Saing;Lee, Sam Sup
    • Journal of Korean Society of Forest Science
    • /
    • v.43 no.1
    • /
    • pp.6-13
    • /
    • 1979
  • In order to substract the time and cost of propagation for inducing the haploid plants per each species. 500 anthers of late uninucleate microspore on early binucleate microspore stage of Robinia pseudoacacia (Fuel tree) Punius granatum (Ornamental tree). Aleurites fordii (Faty tree) and Styrax japonica (Silvicultural tree) were cultured on the modified Murashige and Skoog's medium supplemented with Kinetin, 2.4-D and NAA as growth regulators. And I observed the samples of cultured anthers under the microscope which were made by Microtoming method and Paraffin method. The results were summarized as follows: 1) Among 500 cultured anthers per each species, anther numbers inducing the diploid callus were as follow: Styrax japonica 20 (4% for the species total); Aleurites fordii 10 (2% for the species, total) and Punica granatum 45 (9% for the species total) were showed. 2) 2n Callus were induced from anther wall. but haploid callus were induced from anther locule. 3) Haploid callus were induced only in 25 anthers (5% for the species total) of Robinia pseudoacacia. 4) These haploid callus were not originated from body cell of anther wall tissue, but from reduced microspores, 5) Since already reported many herbaceous haploid plants were induced from the callus which were originated from reduced microspores, I conclude that the anther of woody plant which induced the haploid callus also will be cultured haploid plant.

  • PDF

Variation of Indoor Air Temperature by using Hot Water Piping in Greenhouse (온수배관에 의한 온실 내부의 온도변화)

  • Yoon, Yong-Cheol;Shin, Yik-Soo;Bae, Seoung-Beom;Kim, Hyeon-Tae;Choi, Jin-Sik;Suh, Won-Myung
    • Journal of agriculture & life science
    • /
    • v.46 no.2
    • /
    • pp.179-190
    • /
    • 2012
  • This study was performed to obtain a heat saving effect and enhance the efficiency of a greenhouse by using a hot water piping in order to minimize the operating costs of a greenhouse as oil prices continue to rise. This method also reduces the likelihood of accidents caused by snowdrifts in regions with heavy snowfall. In general, the experimental plot was $2.0{\sim}6.0^{\circ}C$ higher than the control plot. When the skylight felt was opened, the minimum temperature was in the range of $3.0{\sim}12.0^{\circ}C$. Therefore, we judged that damage caused by snowdrifts may be prevented partly by active heating. The temperature difference inside of the greenhouse by height was insignificant. The maximum heating load of the greenhouse according to crop was respectively about $37,000kcal{\cdot}h^{-1}$ and $41,700kcal{\cdot}h^{-1}$. During the experiment, the heat value of each designed temperature in the range of the minimum ambient temperature $-11.9{\sim}4.0^{\circ}C$ was about 95,000~322,000 kcal and it was in the range of $6,050{\sim}20,900kcal{\cdot}h^{-1}$. If it is compared with the maximum heating load, it can be shown that about 15~56% of the heating energy can be supplied. The total heat value and the amount of power consumption were 2,629,025 kcal and 677.3 kWh respectively during the experiment. If it is heated with diesel, a fossil fuel, the consumption during the experiment was 291 L and the cost was 331,700won. Total cost of using electric power was about 24,400 won and it is shown that it is about 7.5% of the cost of diesel consumption. Also, if the total amount of power consumption is converted into energy, it is approximately 582,200 kcal and the energy was just about 22% of the total heat value.

Simultaneous Removal of NO and SO2 using Microbubble and Reducing Agent (마이크로버블과 환원제를 이용한 습식 NO 및 SO2의 동시제거)

  • Song, Dong Hun;Kang, Jo Hong;Park, Hyun Sic;Song, Hojun;Chung, Yongchul G.
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.341-349
    • /
    • 2021
  • In combustion facilities, the nitrogen and sulfur in fossil fuels react with oxygen to generate air pollutants such as nitrogen oxides (NOX) and sulfur oxides (SOX), which are harmful to the human body and cause environmental pollution. There are regulations worldwide to reduce NOX and SOX, and various technologies are being applied to meet these regulations. There are commercialized methods to reduce NOX and SOX emissions such as selective catalytic reduction (SCR), selective non-catalytic reduction (SNCR) and wet flue gas desulfurization (WFGD), but due to the disadvantages of these methods, many studies have been conducted to simultaneously remove NOX and SOX. However, even in the NOX and SOX simultaneous removal methods, there are problems with wastewater generation due to oxidants and absorbents, costs incurred due to the use of catalysts and electrolysis to activate specific oxidants, and the harmfulness of gas oxidants themselves. Therefore, in this research, microbubbles generated in a high-pressure disperser and reducing agents were used to reduce costs and facilitate wastewater treatment in order to compensate for the shortcomings of the NOX, SOX simultaneous treatment method. It was confirmed through image processing and ESR (electron spin resonance) analysis that the disperser generates real microbubbles. NOX and SOX removal tests according to temperature were also conducted using only microbubbles. In addition, the removal efficiencies of NOX and SOX are about 75% and 99% using a reducing agent and microbubbles to reduce wastewater. When a small amount of oxidizing agent was added to this microbubble system, both NOX and SOX removal rates achieved 99% or more. Based on these findings, it is expected that this suggested method will contribute to solving the cost and environmental problems associated with the wet oxidation removal method.

A Study on the Design of the Grid-Cell Assessment System for the Optimal Location of Offshore Wind Farms (해상풍력발전단지의 최적 위치 선정을 위한 Grid-cell 평가 시스템 개념 설계)

  • Lee, Bo-Kyeong;Cho, Ik-Soon;Kim, Dae-Hae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.848-857
    • /
    • 2018
  • Recently, around the world, active development of new renewable energy sources including solar power, waves, and fuel cells, etc. has taken place. Particularly, floating offshore wind farms have been developed for saving costs through large scale production, using high-quality wind power and minimizing noise damage in the ocean area. The development of floating wind farms requires an evaluation of the Maritime Safety Audit Scheme under the Maritime Safety Act in Korea. Floating wind farms shall be assessed by applying the line and area concept for systematic development, management and utilization of specified sea water. The development of appropriate evaluation methods and standards is also required. In this study, proper standards for marine traffic surveys and assessments were established and a systemic treatment was studied for assessing marine spatial area. First, a marine traffic data collector using AIS or radar was designed to conduct marine traffic surveys. In addition, assessment methods were proposed such as historical tracks, traffic density and marine traffic pattern analysis applying the line and area concept. Marine traffic density can be evaluated by spatial and temporal means, with an adjusted grid-cell scale. Marine traffic pattern analysis was proposed for assessing ship movement patterns for transit or work in sea areas. Finally, conceptual design of a Marine Traffic and Safety Assessment Solution (MaTSAS) was competed that can be analyzed automatically to collect and assess the marine traffic data. It could be possible to minimize inaccurate estimation due to human errors such as data omission or misprints through automated and systematic collection, analysis and retrieval of marine traffic data. This study could provides reliable assessment results, reflecting the line and area concept, according to sea area usage.

Economic Analysis on a PV System in an Apartment Complex (공동주택 태양광발전 시스템의 경제성 평가)

  • Kim, Jin-Hyung
    • Journal of Climate Change Research
    • /
    • v.1 no.2
    • /
    • pp.163-177
    • /
    • 2010
  • This study analyzes the economies of photovoltaic systems in an apartment complex of 1,185 households, in cases of feed-in tariff and subsidy for solar home program of the government. When including the revenue only from electricity sales, NPVs of subsidy and that of feed-in tariff are -560 million KRW and -87 million KRW respectively. With the avoided social cost included without the revenues from CERs, NPVs of subsidy and feed-in tariff are -556 million KRW and -84 million KRW respectively. With the revenues from CERs, NPV of subsidy is -526 million KRW and NPV of feed-in tariff is -54 million KRW. As results of sensitivity analysis based on the changes in capital costs and discount rates, while all scenarios with subsidy including the revenues from CERs are not commercially viable, all scenarios with feed-in tariff exclusive of the revenues from CERs are commercially viable when discount rate is less than 7.2% or capital cost is less than 6,840 thousand KRW/kW. In the cases that include the avoided social cost, while all scenarios with subsidy including the avoided social cost as well as the revenues from CERs are not commercially viable, all scenarios with feed-in tariff are commercially viable without the revenues from CERs when discount rate is less than 7.2% or capital cost is less than 6,856 thousand KRW/KW. The results indicate that the changes in discount rates do not influence the revenues from CERs, but the revenues from electricity sale. Considering that the number of apartment complex and the positive environmental and social benefits from PV system, government needs to promote its diffusion.

Analysis of Economic and Environmental Effects of Remanufactured Furniture Through Case Studies (사례분석을 통한 사용 후 가구 재제조의 경제적·환경적 효과 분석)

  • Lee, Jong-Hyo;Kang, Hong-Yoon;Hwang, Yong Woo;Hwang, Hyeon-Jeong
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.67-76
    • /
    • 2022
  • The furniture industry has a high possibility to create value-added and a high potential to create new occupations due to the characteristics of the industry, which mainly consists of small and medium-sized enterprises (SMEs). However, the used furniture, which has sufficient reuse value, is also crushed and used as solid refuse fuel (SRF) recently. Besides, the number of waste treatment companies continues to decrease, and it occurs congestion of wood waste. As a way to solve the issue, a business model development of remanufacturing used furniture can be suggested as an alternative due to its high circular economic efficiency. Remanufacturing business including furniture industry creates positive effects in various aspects such as economic, environmental and job creation. In other words, remanufacturing is an effective recycling way to reduce input resources and energy in the production process. The results of economic analysis show that the expected annual revenue from the single worker furniture remanufacturing site was 104 million won which is 3.11 times more than the average income of a single-worker household in Korea and its B/C ratio was estimated about 30 which means high business feasibility. Revenue through furniture remanufacturing also showed 320 times higher than that of SRF production from the perspective of weight. In addition, it is shown that the GHGs reduction from the furniture remanufacturing is 2.2 ton CO2-eq. per year, which is similar to the amount of GHGs absorption effect of 937 pine trees or 622 Korean oak trees annually. Thus the results of this study demonstrate that it is important to adopt an appropriate recycling method considering the economic and environmental effects at the end-of-life stage.

Numerical Study on the Effect of the Arrangement Type of Rotor Sail on Lift Formation (로터세일의 배열 형태가 양력 형성에 미치는 영향에 관한 수치해석적 연구)

  • Jung-Eun Kim;Dae-Hwan Cho;Chang-Yong Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.197-206
    • /
    • 2023
  • Recently, the international community, including the International Maritime Organization (IMO), has strengthened regulations on air pollution emissions of ships, and eco-friendly ships are actively being developed to reduce exhaust gas emissions. Among them, rotor sail (RS), a wind-assisted ship propulsion system, is attracting attention again. RS is a cylindrical device installed on the ship deck, that generates hydrodynamic lift using a magnus effect. This is a next generation eco-friendly auxiliary propulsion technology, and Enercon company, which developed RS-applied ships, announced that fuel savings of more than 30% are possible. In this study, optimal installation conditions such as RS spacing and arrangement type were selected when multiple RSs were installed on ships. AR=5.1, SR=1.0, and De/D was fixed at 2.0 according to the RS arrangement, and the wind direction was considered only for the unidirectional +y-axis. Regarding arrangement conditions, five conditions were set at 3D intervals in the +x-axis direction from 3D to 15D and five conditions in the +y-axis direction from 5D to 25D. CL, CD and aerodynamic efficiency (CL/CD) were compared according to the square(□) and diamond(◇) shape arrangements. Consequently, the effect of RS on the longitudinal distance was not significantly different. However, in the case of RS flow characteristics according to the transverse distance, the interaction effect of RS was the greatest when the two RSs almost matched the wind direction. In the case of the RS flow characteristics according to the arrangement, notably, when the wind blew in the forward (0°) direction, the diamond (◇) arrangement was least affected by the backward flow between RSs.