최근 선박의 배기가스 규제가 강화되면서 연료소비량을 저감하기 위한 많은 방안들이 검토되고 있다. 그중에서도 선박으로부터 수집한 데이터를 활용하여 연료소모량을 예측하는 기계학습 모델을 개발하고자 하는 연구가 활발히 수행되고 있다. 하지만 많은 연구들이 학습모델의 주요 변수 선정이나 수집데이터의 처리 방법에 대한 고려가 미흡하였으며, 무분별한 데이터의 활용은 변수 간의 다중공선성 문제를 야기할 수도 있다. 본 연구에서는 이러한 문제점을 해결하기 위하여 주성분 분석을 이용하여 선박의 연료소비를 예측하는 방법을 제시하였다. 13K TEU 컨테이너 선박의 운항데이터에 주성분 분석을 수행하였으며, 추출한 주성분으로 회귀분석을 수행하여 연료소비 예측모델을 구현하였다. 평가용 데이터에 대한 모델의 설명력은 82.99%이었으며, 이러한 예측모델은 항해 계획 수립 시 운항자의 의사결정을 지원하고 항해 중 에너지 효율적인 운항상태 모니터링에 기여할 수 있을 것으로 기대된다.
본 연구는 자율운항 선박의 원격 고장 진단 기법 개발의 일부로 수행되었다. 특히, 엔진 연료 계통 장비로부터 계측된 시계열 데이터로부터 상태 진단을 위한 알고리즘 구현 결과를 제시하였다. 엔진 연료 펌프와 청정기를 가진 육상 실험 장비로부터 진동 시계열 데이터 계측하였으며, 이상 감지, 고장 분류 및 고장 예측이 가능한 심층 학습(Deep Learning) 및 기계 학습(Machine Learning) 알고리즘을 구현하였다. 육상 실험 장비에 고장 유형 별로 인위적인 고장을 발생시켜 특징적인 진동 신호를 계측하여, 인공 지능 학습에 이용하였다. 계측된 신호 데이터는 선행 발생한 사건의 신호가 후행 사건에 영향을 미치는 특성을 가지고 있으므로, 시계열에 내포된 고장 상태는 시간 간의 선후 종속성을 반영할 수 있는 학습 알고리즘을 제시하였다. 고장 사건의 시간 종속성을 반영할 수 있도록 순환(Recurrent) 계열의 RNN(Recurrent Neural Networks), LSTM(Long Short-Term Memory models)의 모델과 합성곱 연산 (Convolution Neural Network)을 기반으로 하는 Conv1D 모델을 적용하여 예측 정확성을 비교하였다. 특히, 합성곱 계열의 RNN LSTM 모델이 고차원의 순차적 자연어 언어 처리에 장점을 보이는 모델임을 착안하여, 신호의 시간 종속성을 학습에 반영할 수 있는 합성곱 계열의 Conv1 알고리즘을 고장 예측에 사용하였다. 또한 기계 학습 모델의 효율성을 감안하여 XGBoost를 추가로 적용하여 고장 예측을 시도하였다. 최종적으로 연료 펌프와 청정기의 진동 신호로부터 Conv1D 모델과 XGBoost 모델의 고장 예측 성능 결과를 비교하였다
본 논문에서는 우선 전기화학 유효도 모델에 기반하여 고체산화물 연료전지의 효율적인 2차원 해석모델을 제안하였다. 전기화학 유효도 모델은 연료전지 전극내 전해질 근처의 얇은 활성기능층에서 일어나는 복잡한 반응/전달현상을 고려하여 전극의 전류생산 성능을 정확하게 예측할 수 있는 장점을 가진다. 개발된 2차원 해석모델은 신뢰성을 검증한 후 음극지지 고체산화물 연료전지의 유로 횡방향 전류밀도 및 산소농도 분포를 계산하는데 사용되었으며 이를 통해 다공성 양극에서의 산소고갈 특성을 고찰하였다. 또한 효율적이면서도 정확한 계산을 위한 유로 횡방향 최소 필요격자수에 대한 수치해석 연구도 진행하였다.
PIP is an abbreviation of 'Performance Improvement Package', which is a package that can improve performance by applying some design changes to existing aircraft. Boeing provides PIP applicable to B777-200, and Airbus provides PIP applicable to A350-900 as standard. PIP provided by Boeing and Airbus is a separate task, but it is expected to reduce fuel consumption by reducing drag through aerodynamic improvements. The PIP applied to the A350-900 includes work such as increasing Winglet Height and re-twisting Outboard Wing. This study is to verify the effect of PIP application of the A350-900 aircraft and use it as basic data for economic analysis. The aerodynamic improvement studies and expected effects of the PIP application were examined, and the actual flight data of the PIP-applied and the non-applied aircraft were compared to confirm the PIP application effect. This paper provides empirical results for the aviation industry on the PIP application efficiency as a method of improving fuel efficiency and reducing carbon emission.
본 연구의 목적은 시스템 다이내믹스를 활용하여 선박 연료유 가격의 중장기 예측분석을 수행하는 것이다. 연료유 가격의 정확한 예측을 위해 가격 결정에 영향을 미치는 다양한 변수들 간의 인과적 관계를 바탕으로 정량화된 모델을 구축하였다. 연료유 가격 결정에는 유가에 영향을 미치는 원유 소비와 생산, 경제변화에 영향을 미치는 GDP, 환율 등과 함께 해운물류시장의 수요와 공급에 의해 결정되는 해상운임 등 다양한 구성변수들을 기반으로 시스템 다이내믹스를 활용한 연료유 가격을 예측하고 MAPEs 등을 통한 객관성을 검증하였다. 본 연구의 분석 결과 2029년까지의 연료유 가격은 2016년 대비 소폭 상승세를 보일 것으로 예상되지만 지난 2012년과 같은 급등세는 나타나지 않을 것으로 전망되었다. 본 연구는 각종 변수들 간의 동적인 인과관계를 활용하여 연료유 가격을 예측하여 합리적 추정결과를 유도할 수 있었다는 점과 가격 결정에 영향을 미치는 다양한 변수들의 구조적 관계를 손쉽게 파악함으로써 연료유 가격 변화에 대한 종합적인 위험 관리가 가능하여 해운기업의 효율적인 선대관리를 지원하는데 가치를 가지고 있다.
고체나 액체 추진로켓에 비하여 하이브리드 추진 시스템은 작동조건의 안정성과 안전함등의 많은 장점을 가지고 있다. HTPB와 같은 고체연료는 제작 및 저장, 운송 그리고 장착상의 안정성을 가지고 있으며 하이브리드 로켓의 고체연료로의 산화제의 유입을 제어하면서 추력의 변화와 엔진내부의 연소중단과 재 점화를 용이하게 할 수 있다. 이러한 이유로 인하여 하이브리드 엔진은 좀 더 경제적인 장치로 기대를 모으고 있다. 그러나, 기존의 하이브리드 로켓 엔진은 고체 추진 로켓에 비하여 낮은 연료 regression 율과 연소효율을 가지는 단점이 있다. 이러한 단점을 해결하고 요구되어지는 추력값과 연료유량을 증가시키기 위하여 고체연료의 표면적을 증가시킬 필요가 있다. 기존의 하이브리드 엔진에서는 연료 그레인에 다수의 연소포트를 만들어 표면적을 증가시켰으나 이는 비 활용 공간의 증가와 추진제의 질량 및 체적분율의 상당한 감소를 초래한다. 지난 수십년간에 걸쳐 하이브리드 엔진에서 연료의 regression 특성 및 엔진 성능 향상을 위한 연구가 계속되어 왔으며 최근에 엔진의 체적 규제를 경감시키고 연료의 regression율을 향상시키기 위하여 선회유동을 이용하는 하이브리드 로켓 엔진들이 제안되고 있다. 이러한 선회유동을 가지는 하이브리드 로켓은 고체연료 그레인에 대하여 평행하게 유입되는 기존의 하이브리드 로켓에 비하여 고체연료 벽면에서의 대류열전달이 현저하게 증가하게 되어 아주 높은 고체연료의 regression율을 얻을 수 있는 이점이 있다. 선회유동 하이브리드 로켓의 연소과정은 고체 연료의 열분해과정, 대류 열전달, 난류 혼합, 난류와 화학반응의 상호작용, soot의 생성 및 산화과정, soot 입자 및 연소가스에 의한 복사 열전달, 연소장과 음향장의 상호작용 등의 복잡한 물리적 과정을 포함하고 있다. 이러한 물리적 과정 중 난류연소, 고체연료 벽면 근방에서의 대류 열전달 및 연소과정에서 생성되는 soot 입자로부터의 복사 열전달, 그리고 고체연료 열 분해시 표면반응들은 고체연료의 regression율에 큰 영향을 미친다. 특히 고체연료의 난류화염면의 위치와 폭, 그리고 비 예혼합 난류화염장에서 생성되는 soot의 체적분율의 예측은 난류연소모델, 열전달 모델, 그리고 regression율 모델에 의해 크게 영향을 받기 때문에 수치모델의 예측 능력 향상시키기 위하여 이러한 물리적 과정을 정확히 모델링해야 할 필요가 있다. 특히 vortex hybrid rocket내의 난류연소과정은 아래와 같은 Laminar Flamelet Model에 의해 모델링 하였다. 상세 화학반응 과정을 고려한 혼합분율 공간에서의 화염편의 화학종 및 에너지 보존 방정식은 다음과 같다. 화염편 방정식과 혼합분률과 scalar dissipation rate의 관계식을 이용하여 혼합분률과 scalar dissipation rate에 따른 모든 reactive scalar들을 구하게 된다. 이러한 화염편 방정식들을 mixture fraction space에서 이산화시켜서 얻은 비선형 대수방정식은 TWOPNT(Grcar, 1992)로 계산돼 flamelet Library에 저장되게 된다. 저장된 laminar flamelet library를 이용하여 난류화염장의 열역학 상태량 평균치는 presumed PDF approach에 의해 구해진다. 본 연구에서는 강한 선회유동을 가지는 Hybrid Rocket 연소장내의 난류와 화학반응의 상호작용을 분석하기 위하여 Laminar Flamelet Model, 화학평형모델, 그리고 Eddy Dissipation Model을 이용한 수치해석결과를 체계적으로 비교하였다. 또한 Laminar Flamelet Model과 state-of-art 물리모델들을 이용하여 선회 유동을 갖는 하이브리드 로켓 엔진의 연소 및 Soot 생성 및 산화과정을 살펴보았으며 복사 열전달이 고체 연료 표면의 regression율에 미치는 영향도 살펴보았다. 특히 swirl강도, 산화제의 유입위치 그리고 선회유동의 형성방식이 하이브리드 로켓의 연소특성 및 regression rate에 미치는 영향을 상세히 해석하였다.
OFO, FOF 삼중 충돌형 및 FOOF 이중 분리 충돌형 분무연소장의 3차원 수치해석을 통한 연소성능 예측 및 성능설계 방법에 대하여 고찰하였다. 예조건화 압축성 유동 지배방정식과 저 레이놀즈수 $\kappa$-$\varepsilon$ 2 방정식 난류모델을 바탕으로 LU-SGS 기법을 사용하여 시간적분 하였으며 분무과정은 DSF 방법을 사용하여 모사하였다. n-heptane 액적과 공기를 연료와 산화제로 하는 액체 추진기관 내에서의 분무 연소장을 계산하였으며 연소에서의 난류의 영향은 eddy 소산모델을 사용하여 모사하였다. 분무연소장의 특성과 연소성능이 비교되었으며, 계산 결과 FOF 삼중 충돌형 분사기의 성능이 가장 우수한 반면, OFO 삼중 충돌형 분사기의 성능이 가장 저조한 것으로 나타났다. 연소효율에 중대한 영향을 미치는 파라미터로는 운동량비에 따른 초기 분무 액적의 평균직경과 혼합효율임을 확인하였다. 연소효율은 초기 분무 액적의 평균직경과 반비례, 혼합효율에 비례하여 증가되며, 산화제/연료 혼합비도 비례하여 상승하나, 일정 운동량비 이상에서는 감소되는 것으로 나타났다. 각 분사기 형태에서 운동량비에 따른 연소효율의 변화는 혼합효율의 변화와 동일한 경향을 보이며 그 크기는 분무 액적의 평균직경에 밀접한 관계가 있음을 알 수 있었다.
본 논문에서는 뉴로-퍼지 모델에서 입력 공간의 효율적인 분할을 위하여 계층적 클러스터링방법을 이용하고 있다. 기존의 HCM, FCM 등에서 초기치를 임의로 선택함으로써 데이터의 클러스터를 생성하였으나 제안된 방법은 계층적인 클러스터링을 이용하여 각 데이터간의 정보를 이용하여 클러스터링을 좀더 일반화하였다. 임의로 주어진 초기치에 의하여 클러스터의 형태가 바뀔 수 있는 문제점을 각각의 데이터 정보를 이용함으로써 이러한 문제를 해결하고자 하였다. 이를 자동차 연료 예측 문제에 적용하여 제안된 방법의 유용성을 보이고자 한다.
대체에너지로써의 바이오 연료 작물과 그 경제성에 대한 연구가 최근 활발히 진행되고 있다. 하지만 이러한 새로운 작물의 생산에 따른 수질변화에 대한 연구는 거의 없는 실정이다. 바이오 연료 작물은 그 경제적 효율성 때문에 많은 양의 비료를 필요로 하므로 농경지 부근과 하류지역의 수질 오염이 예측된다. 이 논문에서는 바이오 연료 작물이 수질에 미치는 영향을 검정된 SWAT (Soil and Water Assessment Tool) 모델을 이용하여 작물의 전과 후의 시나리오로 예측하였다. 그리고 수질 악화를 줄이는 방안으로 30미터 넓이의 필터 스트립을 모델에서 시뮬레이션 하였다. 바이오 연료 작물 생산에 필요한 농경 일정은 이 전의 연구를 참고하였다. 모델 예측 결과, 농경지 주변에서는 연간 250-1,150%의 총질소가, 그리고 100-1, 100%의 총인이 각각 증가하였다. 유역의 유출구 (호수)에서는 연간 40-50%의 총질소와 총인이 증가하였다. 필터 스트립을 설치한 후 농경지 주변에서는 연간 58.0-67.9%의 총질소와 57.7-68.2%의 총인이 각각 감소하였으며 유출구에서는 연간 28.5%의 총질소와 29.4%의 총인이 각각 감소하였다.
최근 화석연료의 무분별한 사용으로 인한 자원고갈 문제 및 기후변화 문제 등이 심각해짐에 따라 화석연료를 대체할 수 있는 신재생에너지에 대한 관심이 증가하고 있다. 특히 신재생에너지 중 태양광 에너지는 다른 신재생에너지원에 비해 고갈될 염려가 적고, 공간적인 제약이 크지 않아 전국적으로 수요가 증가하고 있다. 태양광 발전 시스템에서 생산된 전력을 효율적으로 사용하기 위해서는 보다 정확한 태양광 발전량 예측 모델이 필요하다. 이를 위하여 다양한 기계학습 및 심층학습 기반의 태양광 발전량 예측 모델이 제안되었지만, 심층학습 기반의 예측 모델은 모델 내부에서 일어나는 의사결정 과정을 해석하기가 어렵다는 단점을 보유하고 있다. 이러한 문제를 해결하기 위하여 설명 가능한 인공지능 기술이 많은 주목을 받고 있다. 설명 가능한 인공지능 기술을 통하여 예측 모델의 결과 도출 과정을 해석할 수 있다면 모델의 신뢰성을 확보할 수 있을 뿐만 아니라 해석된 도출 결과를 바탕으로 모델을 개선하여 성능 향상을 기대할 수도 있다. 이에 본 논문에서는 BiLSTM(Bidirectional Long Short-Term Memory)을 사용하여 모델을 구성하고, 모델에서 어떻게 예측값이 도출되었는지를 SHAP(SHapley Additive exPlanations)을 통하여 설명하는 설명 가능한 태양광 발전량 예측 기법을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.