• 제목/요약/키워드: 연료펌프(fuel pump)

검색결과 218건 처리시간 0.025초

터보펌프의 수력 성능시험 (Hydraulic Performance Test of a Turbopump)

  • 홍순삼;김대진;김진선;최창호;김진한
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.243-247
    • /
    • 2005
  • 액체로켓엔진용 터보펌프에서 연료펌프에 대한 수력시험을 수행하였다. 작동유체는 상온의 물이며 펌프는 모터로 구동되고 상온의 물을 작동유체로 이용하였다. 인듀서가 펌프의 양정 및 효율에 미치는 영향은 작지만 펌프의 캐비테이션 성능에는 지대한 영향을 미치는 것을 실험으로 확인하였다. 또한 인듀서 단독의 성능을 살펴보기 위한 시험을 수행하였는데, 캐비테이션 시험 중 인듀서에서 $55\%$ 양정저하가 발생할 때 펌프에서 캐비테이션 임계점에 도달하는 것을 알 수 있었다.

  • PDF

선박 중형디젤엔진용 연료분사펌프 해석 연구 (Study on Simulation of Fuel Injection Pump for Marine Medium Diesel Engine)

  • 양영준
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.123-129
    • /
    • 2012
  • This study was carried out to improve the design of fuel injection pump for marine medium diesel engine. For this purpose, all parts of fuel injection pump were modeled and simulated using CATIA V5R19, FLUENT & MSC Nastran. Flow analysis for plunger cylinder and structural analysis for plunger, roller and spring, which were considered as essential parts of fuel injection pump, were performed to find the optimal design of fuel injection pump. As the results, flow of fluid in plunger cylinder was showed good results in case of 7.7~8.0m/s of plunger velocity. Furthermore, it was confirmed that plunger, roller and spring could be operated safely under 1,800bar pressure.

질량법칙을 이용한 연료펌프 특정음 저감 방법 (Particular Noise Reduction Method used to Mass Law)

  • 강태식;심재기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.759-763
    • /
    • 2004
  • High frequency noise of fuel pump has does claimed by user. But high frequency of fuel pump can't heat in the car. But this noise Is an offensive noise outside car. In this study is noise reduction used to mass law. Especially high frequency (for example BPF(blade pass frequency)) is influenced of this law. In detail used to transmission and add to mass according to mass law, reduced particular noise. As a result high frequency is down until can't perception.

  • PDF

연료 변경에 의한 연료분사펌프의 윤활 특성 (Lubrication Characteristics in Fuel Injection Pump with Variation of Fuel Oils)

  • 홍성호
    • Tribology and Lubricants
    • /
    • 제31권6호
    • /
    • pp.245-250
    • /
    • 2015
  • This study investigates the lubrication characteristics of fuel injection pumps with reference to different fuel oils. Medium-speed diesel engines use fuel oils with various viscosities, such as heavy fuel oil (HFO, which is a high-viscosity fuel oil) and light diesel oil (LDO, which is a low-viscosity fuel oil). When fuel oil with a low viscosity is used, both fuel oil and lubricating oil lubricate the system. Thus, the lubrication of the fuel injection pump is in a multi-viscosity condition when the fuel oil in use changes. We suggest three cases of multi-viscosity models, and divide the fuel injection pump into three lubrication sections: a, the new oil section; b, the mixed oil section; and c, the used oil section. This study compares the lubrication characteristics with variation of the multi-viscosity model, clearance. The volume of Section b does not affect the lubrication characteristics. The lubrication characteristics of the fuel injection pump are poor when high-viscosity fuel oil transfers to low-viscosity fuel oil. This occurs because the viscosity in the new oil section (i.e., Section a) dominates the lubrication characteristics of the fuel injection pump. However, the lubricant oil supply in the used oil section (i.e., Section c) can improve the lubrication characteristics in this condition. Moreover, the clearances of the stem and head significantly influence the lubrication characteristics when the fuel oil changes.

외장형 연료펌프를 사용한 LPLi시스템에서 연료의 상태량 변화 예측 (Prediction of Fuel Properties on LPLi System with an External Fuel Pump)

  • 김재형;윤여빈;박영준;송춘섭;이성욱;조용석
    • 한국분무공학회지
    • /
    • 제15권1호
    • /
    • pp.38-43
    • /
    • 2010
  • The LPG(Liquefied Petroleum Gas) fuel attracts attention as a clean alternative fuel. In order to further reduce the exhaust emission and improve performance in LPG engines, the LPLi(Liquid Phase LPG Injection) system is used. In LPLi system, the fuel pump performance is important for keeping the LPG over it's saturated vapor pressure. An external fuel pump is needed to improve the durability for LPG engines. This paper predicted the variation of fuel properties on the LPLi system with an external fuel pump. From each component's thermodynamic model, an 1-D simulation is developed for LPLi system with an external fuel pump. Then the 1-D simulation data analyzed and compared with the rig-test. The 1-D simulation and the rig-test produced similar results.

유량 제어 밸브 방식이 DME 고압 연료 펌프의 성능에 미치는 영향 (Effect of Flow Control Valve Type on the Performance of DME High Pressure Fuel Pump)

  • 신윤섭;이기수;김현철;정수진;박경용;서현규
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.67-73
    • /
    • 2013
  • This experimental work described the effect of flow control valve type on the performance of wobble plate type fuel pump for the stable DME fuel supply. In order to study this, different four types of flow control valves (ITV, SCV, IMV and MPROP) were installed on the wobble plate fuel pump, and fuel flow rate, torque, and temperature variation of pump were investigated under various operating conditions by using pump performance test system. It was revealed that wobble plate type fuel pump worked well with ITV and SCV control valve, and the flow rate and torque of fuel pump was in proportion to the value of valve open duty. The maximum flow rate and torque of fuel pump were achieved around the 50% duty of control valve. Temperature variation at all pump measuring points were under $60^{\circ}C$ which is acceptable.

히트펌프를 이용한 PEMFC 기반 열병합 발전 시스템 (PEMFC Based Cogeneration System Using Heat Pump)

  • 뚜안앵;김영상;이동근;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제32권5호
    • /
    • pp.324-330
    • /
    • 2021
  • In recent years, polymer electrolyte membrane fuel cell (PEMFC) based cogeneration system has received more and more attention from energy researchers because beside electricity, the system also meets the residential thermal demand. However, the low-quality heat exited from PEMFC should be increased temperature before direct use or storage. This study proposes a method to utilize the heat exhausted from a 10 kW PEMFC by coupling a heat pump. Two different configuration using heat pump and a reference layout with heater are analyzed in term of thermal and total efficiency. The system coefficient of performance (COP) increases from 0.87 in layout with heaters to 1.26 and 1.29 in configuration with heat pump and cascade heat pump, respectively. Lastly, based on system performance result, another study in economics point of view is proposed.

동해석을 이용한 연료펌프의 캠 형상 설계 (Cam Profile Design of a Fuel Pump Using Dynamic Analysis)

  • 이봉호;이부윤;김원진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.58-64
    • /
    • 2006
  • This work focuses on reducing the noise and vibration levels of an LPi fuel pump, which are generated from the dynamic motions of pump elements and non-uniform flow of fuel. The noise and vibration levels increase as the revolution speed of the cam goes up. The fuel pump consists of five cavity cells, plungers and diaphragms, which are driven by the cam. The optimal design of the cam profile is performed to decrease the accelerations of moving Parts and to obtain a smooth hydraulic force through a dynamic analysis of a cam-plunger mechanism. The cam-Plunger with a cavity is modeled as a 2 degrees of freedom system having non-linear contacts, the cam profile being represented in terms of Fourier series in order to determine the optimal shape of the cam. From the optimized cam Profile, the acceleration of the diaphragm is reduced in $78\%$, the hydraulic force becoming smoother in case that the hydraulic force is rapidly dropped.

자동차 연료 펌프용 BLDC 모터의 센서리스 기동 및 연료 압력 제어 (Sensorless Starting Method and Fuel Pressure Control of BLDC Motor for Fuel Pump of Vehicle)

  • 장진욱;윤덕용
    • 한국자동차공학회논문집
    • /
    • 제21권2호
    • /
    • pp.114-121
    • /
    • 2013
  • High efficiency operation is required for motors of vehicle to increase fuel efficiency due to the regulation of exhaust gas. This paper presents a control method of fuel pressure to increase fuel efficiency and a sensorless control method of BLDC motor to get higher efficiency than conventional brushed DC motor. Initial rotor position of BLDC motor is detected from current value that is occurred by test voltage pulse and rotor is accelerated by defined sequence to enter sensorless operation mode. The algorithm to control flow rate of fuel pump uses PI controller that is control motor speed to maintain the target fuel pressure commanded by ECU.

터보펌프용 연료펌프의 평균유선 성능해석 (Meanline Performance Analysis of a Fuel Pump for a Turbopump System)

  • 윤의수;최범석;박무룡
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.250-257
    • /
    • 2001
  • Low NPSH and high pressure pumps are widely used for turbopump systems, which have an inducer and operate at high rotating speeds In this paper, a meanline method has been established for the preliminary design and performance prediction of pumps having an inducer for cavitating or non-cavitating conditions and at design or off-design points. The method was applied for the performance prediction of a fuel pump, which had been developed by Hyundai Mobis in collaboration with KeRC for a liquid rocket engine. The engine uses liquid methane and liquid oxygen as working fluids and rotates at 50,000 rpm KeRC carried out a model testing of the fuel pump with water as a working fluid at the reduced speed (10,000 ${\~}$ 15,000 rpm). Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute.

  • PDF