• Title/Summary/Keyword: 연료적 특성

Search Result 1,788, Processing Time 0.026 seconds

Effects of Fuel Injection Timing on Performance in Old Marine Diesel Engine (Using M/S "Hae Rim" of Training Ship) (선박용 노후 디젤기관의 성능에 미치는 연료 분사시기의 영향(실습선 "해림호"를 중심으로))

  • Lim, Jae-Keun;Cho, Sang-Gon;Lee, Ho-Heon;Im, Hyung-Sup
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.5
    • /
    • pp.525-530
    • /
    • 2013
  • In this study, the generator engine of training ship M/S "HAE RIM" of Kunsan National University which is being operated for 20 years was used in the experiment. The experiment was carried out under the engine speed of 1200rpm, then the load was varied 30 kW intervals from 0 to 90 kW and the injection timing was varied $2^{\circ}$CA intervals from BTDC $19^{\circ}$ to $23^{\circ}$CA. In the case of advancing fuel injection timing from BTDC $21^{\circ}$CA to $23^{\circ}$CA, specific fuel consumption is decreased by 1.37%, NOx is increased by 11.59 %, soot is decreased by 23.5 % and $SO_2$ is decreased by 2.8 %. Accoring to the analysis of effects of fuel injection timing on combustion & exhaust emissions characteristics on an old marine diesel engine, it is proved that the optimum fuel injection timing is BTDC $23^{\circ}$ which is $2^{\circ}$ faster than that of original injection timing.

A Study on Performance of Initial Blowoff Flow for a Fuel Pump with Various Temperature and Composition Condition in LPG Engine (자동차용 LPG 펌프의 온도 및 연료조성에 따른 초기토출성능에 관한 연구)

  • Park, Cheol-Woong;Kim, Chang-Up;Choi, Kyo-Nam
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.12-17
    • /
    • 2008
  • The In recent years, the need for more fuel-efficient and lower-emission vehicles has driven the technical development of alternative fuels such as LPG (Liquefied Petroleum Gas) which is able to meet the limits of better emission levels without many modifications to current engine design. LPG has a high vapor pressure and lower viscosity and surface tension than diesel and gasoline fuels. These different fuel characteristics make it difficult to directly apply the conventional gasoline or diesel fuel pump. In this study, experiments are performed to get initial performance and efficiency of the fuel pump under different condition of the temperature and composition of fuel. The characteristics of vane type fuel pump were investigated to access the applicability on LPLi engine.

  • PDF

A Study on Fuel Quality Characteristics of F-T Diesel for Production of BTL Diesel (BTL 디젤 생산을 위한 F-T 디젤의 연료적 특성 연구)

  • Kim, Jae-Kon;Jeon, Cheol-Hwan;Yim, Eui-Soon;Jung, Choong-Sub;Lee, Sang-Bong;Lee, Yun-Je;Kang, Myung-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.450-458
    • /
    • 2012
  • In order to reduce the effects of greenhouse gas (GHG) emissions, the South Korean government has announced a special platform of technologies as part of an effort to minimize global climate change. To further this effort, the Korean government has pledged to increase low-carbon and carbon neutral resources for biofuel derived from biomass to replace fossil and to decrease levels of carbon dioxide. In general, second generation biofuel produced form woody biomass is expected to be an effective avenue for reducing fossil fuel consumption and greenhouse gas (GHG) emissions in road transport. It is important that under the new Korean initiative, pilot scale studies evolve practices to produce biomass-to-liquid (BTL) fuel. This study reports the quality characteristics of F-T(Fischer-Tropsch) diesel for production of BTL fuel. Synthetic F-Tdiesel fuel can be used in automotive diesel engines, pure or blended with automotive diesel, due to its similar physical properties to diesel. F-T diesel fuel was synthesized by Fischer-Tropsch (F-T) process with syngas($H_2$/CO), Fe basedcatalyst in low temperature condition($240^{\circ}C$). Synthetic F-T diesel with diesel compositions after distillation process is consisted of $C_{12}{\sim}C_{23+}$ mixture as a kerosine, diesel compositions of n-paraffin and iso-paraffin compounds. Synthetic F-T diesel investigated a very high cetane number, low aromatic composition and sulfur free level compared to automotive diesel. Synthetic F-T diesel also show The wear scar of synthetic F-T diesel show poor lubricity due to low content of sulfur and aromatic compounds compared to automotive diesel.

A Study on the Performance and Combustion Characteristics with CNG Substitution Rate in a Diesel Engine (CNG 혼소율 변화에 따른 디젤엔진의 성능 및 연소 특성에 관한 연구)

  • Jang, Hyeong-Jun;Lee, Sun-Youp;Kim, Chang-Gi;Cho, Jeong-Kwon;Lim, Jong-Han;Yoon, Jun-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.700-707
    • /
    • 2017
  • In the international natural gas market, natural gas has markedly low calories. The domestic calories standard of natural gas was changed and the performance and efficiency of many industrial machines using natural gas were affected because of low caloric natural gas. Therefore, in this study, a dual fuel engine fueled with natural gas and diesel was tested to examine the effects of the CNG substitution rate on the combustion characteristics, such as thermal efficiency, COVimep and heat release rate. The CNG substitution rate was defined as the ratio of CNG instead of diesel, which was calculated as the total energy. The conditions of the tested engine were fixed $1800rpm/500N{\cdot}m$. In addition, diesel fuel was injected at $16^{\circ}CA$ BTDC and the fuel pressure was fixed at 85 MPa; the lower heating value of CNG was $10,400kcal/Nm^3$. The results of the engine test showed that the amount of diesel fuel was changed according to the CNG substitution rate. Therefore, when the substitution rate was increased, the amount of diesel fuel was decreased, which affected the energy for ignition. In addition, the ignition delay duration was increased, which affected the thermal efficiency and torque. On the other hand, the COVimep was less than 5% and a stable combustion state of the engine was shown.

Effect of the distance between the adjacent injectors on penetration and mixing characteristics of the jet in supersonic crossflow (수평 배치된 분사구의 배치 간격에 따른 초음속 유동장 내 분사 유동의 침투 및 혼합 특성)

  • Kim, Sei Hwan;Lee, Hyoung Jin
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.81-89
    • /
    • 2018
  • In the present study, a numerical investigation was conducted to analyze the effect of the distance between the adjacent injectors on the characteristics of flow structure, fuel penetration, and air/fuel mixing. Numerical results were validated with experimental data using a single injection. Subsequently, the same injector geometry and properties were applied on a non-reacting flow simulation with multiple injectors. Total pressure loss, penetration height, and mixing efficiency were compared with the distance between the injectors. The results showed that each injected gas merged into a single stream, resulting in the 2D-like flow fields under the condition of short distance and lower mixing efficiency along with higher total pressure loss. When the distance between the injectors increased, total pressure loss reduced and mixing efficiency increased due to the weakening of interactions between the injected gases.

Towing properties of Water Hyacinth for Drawbar Unit (부레옥잠 견인장치 개발을 위한 견인특성)

  • Song, Dae Bin;Lim, Ki Hyeon;Jung, Dae Hong
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.119-119
    • /
    • 2017
  • 부레옥잠은 대량 재배 및 수확이 가능한 수질정화용 식물로 생활하수, 축산폐수, 공장폐수 등의 수질정화 기능이 뛰어나고, 수확물은 건조 및 발효과정을 거쳐 가축 사료, 유기질 비료, 버섯 배지로 사용이 가능하고, 별도의 공업적 처리를 거치면 고부가가치의 바이오 연료, 연소용 연료로 사용이 가능한 친환경 농업 생산물로 본 연구에서는 부레옥잠의 고형연료 제조를 위한 수면에서 수확장치 개발을 위한 견인 특성을 파악하고 장치개발 가능성을 파악하고자 하였다. 부력구조물 부력, 부레옥잠 견인력, 부력을 측정하기 위한 실험 장치를 제작하여 부레옥잠 중량, 견인방식, 견인속도에 따른 견인력을 측정하였고, 경남 거제시에 위치한 저수지에서 실제 견인실험을 수행하였다. 실험결과 견인중량 및 견인 속도가 증가할수록 견인력은 증가하였으며 인력으로 부레옥잠을 견인하는 경우 부레옥잠 중량당 견인력은 약 $0.9{\sim}1.39kg_f$로 나타났으며 이는 향 후 부레옥잠 견인장치를 설계할 경우 부레옥잠 견인중량에 따른 견인력 산정 시 참고 자료로 매우 유용하게 활용 가능할 것으로 판단되었다. 저수지에서 견인실험 결과 견인속도 증가에 따른 유속저항으로 경운기에 의한 견인작업은 불가능하였으며 인력에 위한 견인 실험결과 부레옥잠 단위중량당 견인력은 견인바 3 m의 경우 1.5 ~ 2.6 N/kg, 견인바 6 m의 경우 2.1 ~ 5.4 N/kg로 비교적 크기로 나타났으나, 견인용 바에 따른 요인을 고려한 경우는 0.36 ~ 0.91 N/(kg-m)로 비교적 일정한 값을 보였다. 견인용 바 6 m, 무부하에서 인력과 경운기로 견인하는 경우 견인력은 39.24 N, 153.03 N으로 인력으로 견인하는 경우가 견인력이 작게 측정되었음. 이는 속도증가에 따라 물의 저항력이 증가함으로 나타난 결과로 부레옥잠 견인 시 견인속도는 0.36 m/s가 가장 적합한 것으로 판단되었다.

  • PDF

Effect of Fuel/Air Mixing Quality on Temperature Characteristics in a Lean Premixed Model Gas Turbine (희박 예혼합 모형 가스터빈 내에서 연료/공기 혼합정도가 온도 특성에 미치는 영향)

  • Lee Jong Ho;Chang Young June;Jeon Chung Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.274-280
    • /
    • 2005
  • Experimental investigations were carried out in an atmospheric pressure, optically accessible and laboratory-scale dump combustor. The objective of this study is to obtain the phase-resolved gas temperatures at different phases of the oscillating pressure cycle during unstable combustion. To see the effect of incomplete fuel-air mixing on phase-resolved temperature characteristics, CARS temperature measurements were performed. Results including phase-resolved averaged temperature, normalized standard deviation and temperature probability distribution functions (PDFs) were provided in this paper. It could be found that the profile of mean temperature showed the in-phase relationship with pressure cycle. Temperature PDFs give an insight on the flame behavior as well as NOx emission characteristics. These results would be expected to play an important role in better understanding of driving mechanisms and thermo-acoustic interactions.

  • PDF

Performance Characteristics of the Thermal Management System for Passenger Hydrogen Fuel Cell Vehicle (수소연료전지 자동차의 열관리시스템 성능특성에 관한 연구)

  • Lee, Ho-Seong;Won, Jong-Phil;Cho, Chung-Won;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.986-993
    • /
    • 2012
  • The objective of this study is to investigate performance characteristics of the thermal management system for passenger hydrogen fuel cell vehicle under various operating conditions. The thermal management systems comprised of a stack cooling system, an electric device cooling system and an air conditioning system for a passenger room were tested with driving conditions. As a result, in highway driving mode, the cooling performance of the stack cooling system with air conditioning on condition was 28.8 % lower than that of the air conditioning off condition. And cooling load of the electric cooling system in the city driving mode was 65.6% higher than that of the highway driving mode.

Effect of heat treatment and sintered microstructure on electrical properties of Mn-Co-Ni oxide NTC thermistor for fuel level sensor (연료액위센서용 Mn-Co-Ni 산화물계 서미스터의 전기적 특성에 미치는 열처리 및 소결미세구조에 관한 연구)

  • 나은상;백운규;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.2
    • /
    • pp.88-92
    • /
    • 2003
  • The correlationship between heat treatment condition and electrical properties of the Mn-Co-Ni oxide NTC thermistor for fuel level sensor was investigated by the X-ray diffractometry, density measurement, and electrical properties measurement such as resistivity, B constant, and thermal dissipation constant. It was shown that the heat treatment of NTC thermistor was responsible for sinterability of Mn-Co-Ni oxide. The highest density of 5.10 g/㎤ was obtained at $1250^{\circ}C$, 2 hours, at which the densification was almost completed. This is also manifested from the microstructural observation. It is found that the electrical resistivity and B constant are increased at the elevated sintering temperatures. The NTC specimens prepared in this study showed the conventional decrease of resistance with the measured temperature and the linear behavior of output voltage with fuel levels. Therefore, the electrical properties of thermistor were closely correlated with sintering condition. and the Mn-Co-Ni oxide thermistor prepared in this study has a great possibility enough to apply for an automobile fuel level sensor.

Performance and Exhaust Emissions of DME Fuel for Diesel alternate fuel (디젤 대체연로로서의 DME 성능 및 배기특성)

  • 표영덕;남상훈;김강출;이영재
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.39-44
    • /
    • 2002
  • 배기가스의 규제가 전 세계적으로 강화되고 있는 가운데, 경유사용 디젤기관은 가솔린기관 보다 열효율이 높고 온실가스인 $CO_2$ 배출량이 적은 장점이 있으나, PM(입자상 물질)과 NO$_{x}$가 다량 배출되는 단점이 있다. 이들의 저감책으로서, 엔진개량, 연료분사장치의 고압화와 전자제어화, 배기 후처리기술의 적용 등 디젤기관의 고효율성을 손상시키지 않으면서, 배기공해를 대폭 저감하려는 연구가 활발히 추진되고 있으며, 한편으로는 디젤기관의 대체연료에 대한 연구가 활발히 추진되고 있다.(중략)

  • PDF