• Title/Summary/Keyword: 연료적 특성

Search Result 1,788, Processing Time 0.033 seconds

A review of the Technical Requirements to Propellants for Launch-Vehicle and the Status of Kerosene Development in Abroad (우주발사체용 추진제 요구조건 및 해외 케로신 개발현황 검토)

  • Lim, Seok-Hee;Jung, Young-Suk;Cho, Gyu-Sik;Lee, Han-Ju;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.181-189
    • /
    • 2007
  • The technical requirements to the propellant of rocket engine using chemical energy are developed from the point of its performance, design and the exploration. The propellant, i.e. to get higher energy, to increase the cooling effect, and to be used in safety and comfort should be made. So from these aspect the technical requirements were written by the factors of physical chemistry. And the propellant combination used recently in Launch vehicles is liquid Oxygen and Kerosene, the main characteristics of this Kerosene as a fuel were reviewed. The toxicity and the safety of Kerosene, in specially, require the attention of the users. Also, it would be used in the development of Korean Kerosene by the comparative review of the several Kerosenes in Abroad.

  • PDF

Current Collector Effects on High Temperature Electrolysis by NI-YSZ Cermet Supported Solid Oxide Cells (집전체에 따른 NI-YSZ Cermet 기반의 가역적 고체산화물 연료전지를 이용한 고온 수증기 전기분해 특성)

  • Shin, Eui-Chol;Ahn, Pyung-An;Seo, Hyun-Ho;Lee, Jong-Sook;Yu, Ji-Haeng;Woo, Sang-Kuk
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.6
    • /
    • pp.533-539
    • /
    • 2010
  • Ni-YSZ supported button cells were prepared by spray-coating YSZ and screen-printing YSZ-LSM powder as an electrolyte and oxygen electrode on Ni-YSZ cermet disks. In order to identify the polarization loss mechanism in high temperature electrolysis current-voltage characteristics coupled with electrochemical impedance spectroscopy were investigated as a function of temperature, current load, and the humidity. The effects of the different current collectors of platinum and silver for oxygen electrodes were compared. With Ag current collector two polarization losses were distinguished. The high frequency component was attributed to the Ni-YSZ cermet which was less susceptible to temperature variation but increasing in loss with humidity. The lower frequency component was attributed to the LSM electrode. Platinum current collector led to a much lower polarization loss.

Oxygen Reduction Reaction of La1-xCaxCoO3 of Gas Diffusion Electrode in Alkaline Fuel Cell (알칼리형 연료전지용 La1-xCaxCoO3 기체확산전극의 산소환원반응)

  • Shim, Joong-Pyo;Park, Yong-Suk;Lee, Hong-Ki;Park, Soo-Gil;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.992-998
    • /
    • 1996
  • The $La_{0.8}Ca_{0.2}CoO_3$ prepared by a citrate process was shown to have higher oxygen reduction current density and specific activity than $LaCoO_3$, $La_{0.6}Ca_{0.4}CoO_3$. In the cyclic voltammogram, an oxygen desorption peak of a $La_{0.8}Ca_{0.2}CoO_3$+carbon electrode was larger than that of a only carbon electrode. $La_{0.8}Ca_{0.2}CoO_3$ sintered at $900^{\circ}C$ for 5 hours was shown high oxygen reduction current density because of the particle size distribution and sintering effect.

  • PDF

Computational Fluid Dynamic Modeling for Internal Antenna Type Inductively Coupled Plasma Systems (CFD를 이용한 내장형 안테나 유도 결합 플라즈마 시스템 모델링)

  • Joo, Jung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.164-175
    • /
    • 2009
  • CFD is used to analyze gas flow characteristics, power absorption, electron temperature, electron density and chemical species profile of an internal antenna type inductively coupled plasma system. An optimized grid generation technology is used for a complex real-scale models for industry. A bare metal antenna shows concentrated power absorption around rf a feeding line. Skin depth of power absorption for a system is modeled to 50 mm, which is reported 53 mm by experiments. For an application of bipolar plates for hydrogen fuel cells, multi-sheet loading ICP nitriding system is proposed using an internal ICP antenna. It shows higher atomic nitrogen density than reported simple pulsed dc nitriding systems. Minimum gap between sheets for uniform nitriding is modeled to be 39 mm.

Thermal and Physicochemical Characteristics of Solid Fuel Extruded with Cattle Feedlot Manure (우분 성형 고형연료의 열 및 물리화학적 특성)

  • Lee, Gwi-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.35 no.1
    • /
    • pp.64-68
    • /
    • 2010
  • Cattle feedlot manure could be used effectively as the solid fuel for heating of agricultural facilities. Therefore, this study was carried out to investigate the thermal and physicochemical characteristics of solid fuel extruded with cattle feedlot manure. Calorific values of the solid fuel extruded with cattle feedlot manure, which was dried to the moisture contents of 0.0% (w.b) and 35.0% (w.b,) were 14,906 kJ/kg and 11,797 kJ/kg, respectively. Calorific value of extruded solid fuel was linearly decreased with the increase of moisture content. The first, second, and third reaction point during thermal pyrolysis of solid fuels extruded with cattle feedlot manure was investigated as $108.1^{\circ}C$, $312.2^{\circ}C$, and $459.4^{\circ}C$, respectively. The maximum reaction point was presented at the temperature of $312.2^{\circ}C$. Weight loss of extruded cattle feedlot manure during thermal pyrolysis until $600^{\circ}C$ was reached to about 60%. Volume decrease of initial extruded cattle feedlot manure was 61% during drying for the use as solid fuel. Maximum strength of extruded cattle feedlot manure, which was dried as the moisture content of 10% (w.b.) was 41,9150 N/$m^2$. Ignition gas analysis of extruded cattle feedlot manure presented that it has small amount of $NO_x$ and $SO_x$. It was shown that dried cattle feedlot manure had main components of C and O including small amount of Mg, Si, and Ca.

Biodiesel Production Using Castor Oil and Quality Analysis (피마자유로부터 바이오디젤 생산을 위한 물성 분석)

  • Kim, Deogkeun;Lee, Joonpyo;Park, Soonchul;Lee, Jinsuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.176.2-176.2
    • /
    • 2011
  • 피마자유(Castor oil)는 합성수지, 그리스, 유압용 오일, 윤활기유 등의 다양한 용도로 쓰이는 오일로서 점도가 높고 무색에서 황갈색을 띈다. 피마자유 추출은 압착 착유 또는 용매 추출로 얻게 되며 본 실험에 사용된 오일은 압착 착유한 것으로 매우 진한 갈색을 띄는 정제전 오일을 이용하였다. 실험에 사용된 피마자유의 초기 산가는 1mgKOH/g 이하로 낮은 유리지방산 함량을 보였으며 수분은 0.3%로 전이에스테르화 반응을 위해서는 수분 증발이 필요했다. 피마자유의 바이오디젤 생산을 위해 진행된 물성 분석 항목은 산가, 수분, 인함량, 황함량, 점도, 고형물이며 원료유와 그 바이오디젤에 대해 각각 물성 분석을 실시하였다. 피마자유의 가장 큰 특징은 다른 식물성 오일과는 다르게 오일이 알코올에 녹는 특성이 있으며 이런 이유로 전이에스테르화 반응 후 바이오디젤과 글리세롤이 분리되지 않는 문제점을 갖고 있다. 피마자유를 이용해 제조한 바이오디젤, 즉 지방산메틸에스터의 함량을 분석한 결과 약 90%의 메틸에스터화 반응 전환율을 나타내었으나 국내외 품질규격상의 탄소수 C14~C24:0의 지방산 에스터(fatty acid methyl esters)로 검출되는 바이오디젤의 함량은 10% 미만으로 나타났으며 나머지 90%는 라이신올레익산메틸에스터(ricinoleic acid methyl ester)로 분석되었다. 따라서, 기존의 대두유, 유채유, 팜유, 폐식용유로부터 제조한 바이오디젤과 물성이 매우 상이하고 특히 끊는점(boiling point)과 점도가 높아 경유 대체연료로는 활용이 불가능할 것으로 판단된다. 하지만 기존의 다양한 용도의 오일로 사용하기 위해 정제하는 과정에서 전체 착유 오일중의 약 10%만을 선택적으로 분리하여 바이오디젤 원료로 활용하는 방안은 가능할 것으로 판단된다.

  • PDF

Theoretical Performance Prediction Program of Pulse Detonation Engines (펄스 데토네이션 엔진 이론 성능 예측 프로그램)

  • Kim, Tae-Young;Kim, Ji-Hoon;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.552-560
    • /
    • 2014
  • Pulse Detonation Engine(PDE) has been investigated as a next generation propulsion system with the advantages of the higher thermal efficiency by the compression effect and the wide operation ranges from zero speed at ground. In the present study, an efficient theoretical PDE performance prediction program was developed for realistic propellants based on the Endo's theory combining the Chapman-Jouguet detonation theory and expansion process of burnt gas in a constant area tube. The program was validated through the comparison with the experimental data obtained by a ballistic pendulum measurement. PDE performance analyses were carried out for various hydrocarbon fuels and oxidizer compositions by changing the mixture equivalence ratio and initial conditions. Theoretical PDE performance database could be established as a result of the analyses.

Overview of the Bioethanol and Gasohol as a Fuel for Vehicle (차량용 연료로 사용되는 바이오에탄올과 가소홀)

  • Lee, Jin-Hui;Rheem, Hwa-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.516-530
    • /
    • 2012
  • Gasohol which is the mixture of gasoline and ethanol, is used to gasoline vehicles worldwide currently. This study is performed by the methods of the review of references, and includes the background introduced, manufacturing processes, amounts produced, original properties, specifications, ways of applied currently, regulations and policies as a fuel for gasoline vehicles on individual countries through the scope of worldwide, especially focused on bioethanol and gasoline. By the reason above, it is prepared by focused on multiple angles for the person who want to getting information and searching desired ways in the future regarding to bioethanol and gasohol. It is concluded that gasohol is one of the useful renewable energies, and must to take a step forward by the approaching of multiple points, and finally showed some directions by the way of comparing of the situations and references nowaday.

Influence of Reaction Temperature on the Pyrolytic Product of Rice Straw by Fast Pyrolysis using a Fluidized Bed (볏짚의 급속 열분해 생성물에 대한 반응온도의 영향)

  • Kang, Bo-Sung;Park, Young-Kwon;Kim, Joo-Sik
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.47-58
    • /
    • 2005
  • Rice straw is one of the main renewable energy sources in Korea, and bio-oil is produced from rice straw with a lab. scale plant equipped mainly with a fluidized bed and a char removal system. We investigated how the reaction temperature affected the production of bio-oil and the efficiency of a char removal system. To elucidate how the temperature depended on the production of bio-oil, experiment were conducted between $450^{\circ}C\;and\;600^{\circ}C$ with a feed rate of about 300g/h. The mass balance was established in each experiment, and the produced gas and oil were analyzed with the aid of GCs and a GC-MS system. The char removal system is composed of a cyclone and a hot filter. In the experiments, we observed that the optimum reaction temperature range for the production of bio-oil is between $450^{\circ}C\;and\;500^{\circ}C$.

  • PDF

Organic/inorganic Hybrid Electrolytes for the Application of Direct Methanol Fuel Cell (DMFC) - Preparation and Properties of Sulfonated SEBS (SSEBS)-clay Hybrid Membranes - (직접메탄올 연료전지용 유무기 하이브리드 전해질 - 술폰화된 SEBS (SSEBS)-clay 하이브리드 막의 제조 및 물성 -)

  • Nam Sang Yong;Park Byung-Kil;Kong Sung-Ho;Kim Young Jin
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.165-174
    • /
    • 2005
  • Sulfonated poly(styrene-ethylene-butadiene-styrene) (SSEBS)-clay hybrid membranes were prepared by solution method. In the preparation of hybrid membrane, the amount of clay content was fixed to 5 phr and montmorillonite (MMT) was fully exfoliated by the SEBS and it was confirmed by X-ray diffraction method. D-spacing of the characteristic peak from MMT plate in WAXD was fully diminished. Gas permeability, mechanical properties and thermal properties of the SSEBS-clay hybrid membranes were investigated. Gas permeability through the SSEBS-clay hybrid membranes decreased due to increased tortuosity made by exfoliation of clay in SEBS.