• Title/Summary/Keyword: 연료분사 제어

Search Result 130, Processing Time 0.025 seconds

A Study on the High Pressure Pump Simulation Model of a Diesel Injection System (디젤 분사시스템의 고압펌프 시뮬레이션 모델에 대한 연구)

  • Kim, Joongbae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.102-109
    • /
    • 2017
  • The high pressure pump of a diesel injection system compresses the fuel supplied at low pressure into high pressure fuel and maintains the fuel of the common rail at the required pressure level according to the engine operating conditions. The high pressure pump is required to operate normally in order to compress the fuel to a high pressure of 2000 bar during the entire lifetime of the vehicle. Consequently, a suitable design technique, material durability and high precision machining are required. In this study, the high pressure pump simulation model of a 1-plunger radial piston pump is modelled by using the AMESim code. The main simulation parameters are the displacement, flow rate and pressure characteristics of the inlet and outlet valves, cam torque characteristics, and operating characteristics of the fuel metering valve and overflow valve. In addition, the operating characteristics of the pump are simulated according to the parameter changes of the hole diameter and the spring initial force of the inlet valve. The simulation results show that the operation of the developed pump model is logically valid. This paper also proposes a simulation model that can be used for current pump design changes and new pump designs.

A Study on Applicability to Dual-Fuel Engine of Low Caloric Gas (저발열량 가스의 혼소엔진 적용에 관한 연구)

  • Park, Cheol-Woong;Lee, Sun-Youp;Kim, Chang-Gi;Won, Sang-Yeon;Lee, Jang-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.15-20
    • /
    • 2010
  • The interest on the utilization of landfill gases and biogases for energy production has been increasing due to environment concerns and global warming caused by burning fossil fuels, renewable nature of these gases. Using those synthesis gases to generate energy with engine encourages more efficient collection reducing emissions into the atmosphere and generates revenues for the operators. However the lower calorific value of synthesis gases than that of LPG or CNG affects the combustion stability and power output. Thus it becomes necessary to address disadvantages involved by studying synthesis gases in technological perspective. This paper discussed synthesis gas as a fuel for 60kW dual-fuel engine to produce power in an effective way. The methane diluted with $N_2$ was used as a fuel and developed ECU and injector driver facilitated the investigations with diesel fuel.

A Study on Performance Improvement in Durability and Reliability of LPi Injector (LPI 인젝터의 성능 및 내구성 개선에 관한 연구)

  • Park, Cheol-Woong;Kim, Chang-Up;Choi, Kyo-Nnam;Baik, Seung-Kook;Shin, Moon-Sung
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.2
    • /
    • pp.38-44
    • /
    • 2012
  • In recent years, the need for more fuel-efficient and lower-emission vehicles has driven the technical development of alternative fuels such as LPi (Liquid phase LPG injection) which uses pump for the high pressure supply of liquid LPG fuel and is able to meet the limits of better emission levels while it has an advantage of higher power. Although it has the advantage of power and lower emission levels, the characteristics of LPG, such as high vapor pressure, lower viscosity and surface tension than gasoline fuels makes it difficult design system. Therefore most fuel pumps and injectors are imported. In the present study, in order to domestically develop LPG injector which guarantees flow rates and optimal operation, the experimental investigation on leakage and flow rate characteristics of developed prototype injector was carried out at the bench test rig for developed injector.

비행용 가스발생기 모사배관 도출 및 연소불안정 제어를 위한 음향해석

  • Kim, Hong-Jip;Kim, Seong-Ku;Choi, Hwan-Seok
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.171-178
    • /
    • 2005
  • An acoustic analysis of a fuel-rich gas generator for the drive of a turbopump in a liquid rocket engine has been performed and the length of a simulating duct has been determined by comparing the resonant frequency of unstable acoustic modes to simulate an actual flight model gas generator. To simulate more realistically, a realistic short-length simulating duct has been determined by considering 1 or 2 wavelength of the unstable modes. Duct-length adjustment to turbopump can be a method to suppress a combustion instability problem by decoupling of acoustic mode and combustion characteristics. This method has been set up and validated with acoustic analysis and hot firing tests.

  • PDF

An Acoustic Analysis for the Determination of a Simulating Duct and for the Suppression of Combustion Instabilities in a Flight Model Gas Generator (비행용 가스발생기 모사배관 도출 및 연소불안정 제어를 위한 음향해석)

  • Kim Hong Jip;Kim Seong-Ku;Han Yeoung-Min;Choi Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.1-9
    • /
    • 2005
  • An acoustic analysis of a fuel-rich gas generator for the drive of a turbopump in a liquid rocket engine has been performed and the length of a duct has been determined by comparing the resonant frequency of unstable acoustic modes to simulate an flight model gas generator, A practical short-length simulating duct has been determined by considering 1 or 2 wavelength of the unstable modes. Length adjustment of duct to turbopump can be a method to suppress a combustion instability problem by decoupling of acoustic mode and combustion characteristics. This method has been set up and validated with acoustic analysis and hot firing tests.

A Study on Lubricant additive of DME Common-rail Vehicle (DME 커먼레일 차량의 윤활향상제에 관한 연구)

  • Park, JungKwon;Kim, Hyunchul;Jeong, SooJin;Chon, MunSoo
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.15-18
    • /
    • 2013
  • The next generation alternative fuel of diesel, DME (Dimethyl Ether) discharges particulate matter hardly due to chemical structural as oxygen-fuel so it has the eco-friendly property. Despite these advantages, the DME has the technical difficulties to apply to the diesel engine because of a low calorific value, viscosity and compressibility effects. From this point of view, we performed experimental studies on improved reliability of DME common-rail vehicle and lubricity enhancement of DME fuel for empirical distribution of eco-friendly DME fuel. Also we analyzed solubility of lubrication enhancer according to a drop in temperature, try to secure reliability about core parts of DME vehicle by applying lubrication enhancer in the DME common-rail vehicle.

  • PDF

A Study on Mixture Preparation in a Port Fuel Injection Sl Engine During Engine Starting (흡기포트 분사방식의 가솔린 엔진에서 냉시동시 혼합기 형성에 관한 연구)

  • 황승환;이종화;민경덕
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.15-22
    • /
    • 2002
  • As the emission regulations on the automobiles have been increasingly stringent, precise control of air/fuel ration is one of the most important issues on the gasoline engines. Although many researches have been carried out to identify the fuel transport phenomena in the port fuel injection gasolines, mixture preparation in the cylinder has not been fully understood due to the complexity of fuel film behavior, In this paper, the mixture preparation during cold engine start is studied by using a Fast Response Flame ionization Detector.(FRFID) In order to estimate the transportation of injected fuel from the intake port into cylinder, the wall wetting fuel model was used. The two coefficient($\alpha$,$\beta$) of the wall-wetting fuel model was determined from the measured fuel mass that was inducted into the cylinder at the first cycle after injection cut-in. $\alpha$( ratio of directly inducted fuel mass into cylinder from injected fuel mass) and $\beta$ (ratio of indirectly inducted fuel mass into cylinder from wall wetted fuel film on the wall) was increased with increasing cooling water temperature. To reduce a air/fuel ratio fluctuation during cold engine start, the appropriate fuel injection rate was obtained from the wall wetting fuel model. Result of air/fuel ratio control, air/fuel excursion was reduced.

V형 유입구에 안내깃을 포함한 액체 램제트 엔진 연소실의 3차원 비반응 및 반응 유동 해석

  • 임상규;손창현;문수연;이충원
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.9-9
    • /
    • 2000
  • 액체 램제트 엔진의 V형 유입구에 3개의 안내깃이 있은 경우에 대하여 유동 해석을 수행하였다. 수치해석에 앞서 본 연구에서는 ONERA에서 발표한 고체 램제트 연소기에 대한 실험 결과를 유동 해석 결과와 비교하여 해석의 정확성을 검증하였다. 안내깃에 의하여 연소실로 유입되는 공기는 유입구 곡관에서 효율적인 흐름을 유지할 수 있고 분사되는 연료의 분포도 제어될 수 있다. 안내깃의 두께가 큰 경우 자칫 유입되는 공기의 흐름을 방해하는 장애물의 역할을 할 수 있으므로 두께의 변화에 대한 영향도 계산하였으나 선정된 안내깃에 의한 연소실에서의 유동특성 변화는 적은 것으로 나타났다. 입구조건을 균일 유동으로 주고 해석한 결과, 연소실에서의 유동은 안내깃의 유무에 따라 큰 영향을 받지 않았다. 그러나 흡입구로 유입되는 공기의 속도 분포는 다양한 비행조건에서 균일하지 않기 때문에 주 유동을 방해하지 않는 안내깃의 설치는 연소실에서의 좀 더 안정된 화염의 생성을 위해 필요하다.

  • PDF

Preliminary Estimates on the Performance and the NOx Emission Characteristics of the Gas Turbine of IGCC PDU (IGCC용 PDU급 가스터빈의 성능 및 NOx배출 특성에 관한 예비평가)

  • Kim, Yong-Chul;Lee, Chan;Lee, Han-Goo;Yun, Yong-seung
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.05a
    • /
    • pp.73-78
    • /
    • 1998
  • 상용 IGCC발전소의 특징적 공정흐름에 대한 분석기술의 확보를 위해 PDU급 IGCC발전계통에 대한 성능평가와 NOx 배출에 대한 모델링을 수행하였다. 향후 IGCC발전소 건설시 선정가능성이 있는 4가지 가스화 공정에서 생산되는 석탄가스를 연료로 하고, 그 발전계통의 대상 가스터빈은 산업현장에서 사용되고 있는 GE사의 LM1600PA를 선정하였다. 석탄가스는 천연가스에 비해 가스터빈의 효율과 출력 상승을 가져오나, 이와 동시에 압축기 탈설계점 작동문제를 야기 시킬 수 있다. 또한 NOx 발생량은 석탄가스 연소시 급격히 증가하며, NOx 제어를 위해 질소분사가 이루어져야 함을 알 수 있었다.

  • PDF

Structure & operation of electronic fuel injection (전자제어식 연료분사장치의 구조와 작동)

  • 목희수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.13-23
    • /
    • 1986
  • The power of an international combustion engine depends on its ability to inhale air whether it is naturally aspirated or turbocharged. The use of fuel injection allows engine efficiency to be increased through a more even distribution of the air/fuel ratio throughout the engine's operation range. The theoretical value for complete combustion in an engine is commonly refered to as stoichiometric, which means that we require 14.7 parts of air to 1 part of gasoline. This stoichiometric ratio can be more closely maintained with electronically controlled fuel injection than it can with carburetion. Because of the greater efficiency of the engine using fuel injection, a horse power increase of at least 10% is produced over its carburetor version. In addition, better fuel economy and less exhaust emissions are also obtained.

  • PDF