• Title/Summary/Keyword: 연동펌프

Search Result 39, Processing Time 0.032 seconds

Encapsulation of Agro-Probiotics for Promoting Viable Cell Activity (생균력 증진을 위한 농업용 미생물제 미세캡슐화)

  • Choi, So-Young;Yoon, Min-Ho;Whang, Kyung-Sook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.287-293
    • /
    • 2005
  • In this work, to develop soil inoculant which maintains stable viable cells and normalized quality, studies on micro-encapsulation with bacteria and yeast cells were performed by investigating materials and methods for micro-encapsulation as well as variation and stability of encapsulated cells. Preparation of capsule was conducted by application of extrusion system using micro-nozzle and peristaltic pump. K-carragenan and Na-alginate were selected as best carrier for gelation among K-carageenan, Na-alginate, locust bean gum, cellulose acetate phthalate (CAP), chitosan and gelatin tested. Comparing the gels prepared with Bacillus sp. KSIA-9 and carriers of 1.5% concentration, although viable cell of K-carragenan and Na-alginate was six times higher than those of other, Na-alginate was finally selected as carrier for gelation because it is seven times cheaper than K-carragenan. The gel of 1.5% Na-alginate was also observed to have the best morphology with circular hardness polymatrix and highest viable cell. When investigating the stability of encapsulated cells and the stabilizer effect, free cells were almost dead within 30 or 40 days whereas encapsulated cells decreased in 10% after 30 days and 15-30% even after 120 days. As stabilizer for maintaining viable cell, both 1% starch and zeolite appeared to possess the level of 70-80% cell for bacteria and yeast until after 120 days.

Design on the interfacing between auto-pilot and water-jet drive system (Auto pilot 와 water jet drive system 간의 Interface 설계)

  • Jin, Hyong-Du;Choi, Jo-Cheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.535-538
    • /
    • 2009
  • Auto Pilot is the system which move automatically the vessel through locating operation mode to automatic after entering operating course using a electronic chart or plotter. And water jet is the a propulsion system that make a power to push the vessel through spouting the accelerated water which is absolbed by the hole in the bottom of vessel. The water jet receive the effect of the depth of water lowly, it's acceletion efficiency is higher under high speed and have an advantage on vibrating and floating sound, so it's demand is increasing as new propulsion system. However, the signal systems of auto Pilot and water jet are defferant, we need the system to communicate between each system. We propose the interface system which communicate between Auto pilot and water jet efficiently in this journal.

  • PDF

Implementation of ROS-Based Intelligent Unmanned Delivery Robot System (ROS 기반 지능형 무인 배송 로봇 시스템의 구현)

  • Seong-Jin Kong;Won-Chang Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.610-616
    • /
    • 2023
  • In this paper, we implement an unmanned delivery robot system with Robot Operating System(ROS)-based mobile manipulator, and introduce the technologies employed for the system implementation. The robot consists of a mobile robot capable of autonomous navigation inside the building using an elevator and a Selective Compliance Assembly Robot Arm(SCARA)-Type manipulator equipped with a vacuum pump. The robot can determines the position and orientation for picking up a package through image segmentation and corner detection using the camera on the manipulator. The proposed system has a user interface implemented to check the delivery status and determine the real-time location of the robot through a web server linked to the application and ROS, and recognizes the shipment and address at the delivery station through You Only Look Once(YOLO) and Optical Character Recognition(OCR). The effectiveness of the system is validated through delivery experiments conducted within a 4-story building.

Designing a Decentralized Stormwater Management Corridor for a Flood-Prone Watershed using Surface Runoff Analysis (지표유출수 분석을 통한 상습침수유역의 분산식 우수관리통로 설계)

  • Lee, Seul;Lee, Yumi
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.13-26
    • /
    • 2015
  • Many urban areas in Korea suffer from repeated flood damage during intensive rainfall due to an increase in impervious areas caused by rapid urbanization and deteriorating sewage systems. A centralized stormwater management system has caused severe flood damage in an area that has proven unable to accommodate recent climate change and a rise in precipitation. Most flooding prevention projects that have been recently implemented focus on increasing drainage system capacity by expanding the size of sewer pipes and adding pumping stations in downstream areas. However, such measures fail to provide sustainable solutions since they cannot solve fundamental problems to reduce surface runoff caused by urbanization across the watershed. A decentralized stormwater management system is needed that can minimize surface runoff and maximize localized retention capacity, while maintaining the existing drainage systems. This study proposes a stormwater management corridor for the flood-prone watershed in the city of Dongducheon. The corridor would connect the upstream, midstream, and downstream zones using various methods for reducing stormwater runoff. The research analyzed surface runoff patterns generated across the watershed using the Modified Rational Method considering the natural topography, land cover, and soil characteristics of each sub-watershed, as well as the urban fabric and land use. The expected effects of the design were verified by the retainable volume of stormwater runoff as based on the design application. The results suggest that an open space network serve as an urban green infrastructure, potentially expanding the functional and scenic values of the landscape. This method is more sustainable and effective than an engineering-based one, and can be applied to sustainable planning and management in flood-prone urban areas.

Development of Water Risk Management Platform for Indonesia Area (인도네시아 물 재해 관리 플랫폼 개발과 적용성 평가)

  • Park, Dae Hee;Park, Joo Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.381-381
    • /
    • 2019
  • 동남아시아의 급격한 도시인구 증가는 도시화로 파생되는 제반문제를 유발하고 있으며 특히 집중호우와 홍수배제 시설의 부족 및 유관시설의 정보관리체계 부재는 홍수 피해규모를 가중시키고 있다. 인도네시아의 경우 물 재해 관리기관 간의 정보공유체계 부재로, 홍수로 인한 문제해결에 대하여 효과적인 대응이 어려운 실정이다. 주요 물 관리 기관인 유역관리청(BBWS)의 경우 조기홍수경보시스템을 보유하고 있으나 단순 수문현황 모니터링에 국한되어 운영되고 있다. 이에 본 연구에서는 홍수피해를 최소화 할 수 있는 동남아시아 맞춤형 물 재해 관리 클라우드 플랫폼을 개발하여 비구조적 홍수 문제해결의 매개체로 활용하고자 한다. 기본적인 유역 수문현황 모니터링과 함께 댐, 보, 배수문 및 펌프장 등 홍수방어시설물의 운영현황 정보, 홍수상황분석, 홍수위험지도 등 종합적인 물 재해 정보를 제공하고 사전에 홍수위험 지역을 분석하여 유관기관과 공유할 수 있는 물 재해 관리 의사결정지원시스템을 개발하고자 한다. 기본적인 정보관리 체계화를 위하여 인도네시아의 다양한 물 재해 관련기관에서 보유하고 있는 자료들의 통합 클라우드 DB관리 시스템을 구축하였다. 연구대상지역은 인도네시아 수도인 자카르타의 Pesanggrahan유역과 인근 Batam섬 Baloi유역을 선정하였으며 대상 유역의 수문, 기상자료 및 GIS 정보수집은 공동연구기관인 인도네시아 공공사업부 수자원청(MPWH)과 주요 물 관리기관인 유역관리청(BBWS)의 협조를 통하여 진행하였다. 수집된 자료들은 관계형 데이터베이스 관리시스템인 MySQL을 사용하여 통합 물 재해 정보 데이터베이스를 구축하였으며 완성된 데이터베이스의 정보제공 및 공유시스템은 웹기반 인터페이스를 통해 관리되도록 설계하였다. 홍수유출 해석을 위한 분석 엔진은 K-water의 홍수분석 시스템인 FAS를 이용하였다. FAS의 홍수분석모형인 COSFIM과 수리모형인 Fldwav를 연계하는 데이터 분석 플랫폼을 완성하였으며 인도네시아 현지 조건에 부합하는 홍수분석 시스템으로 Customizing과정을 수행하였다. 또한 FAS의 PC기반 시뮬레이션 형식을 DB 연계형 웹서비스 방식으로 연동되도록 개량하였으며 추후 SaaS형 물 재해 분석시스템으로 전환할 수 있는 개발환경을 확보하였다. 개발된 물 재해 분석 플랫폼(WRMP)을 활용하여 인도네시아 공동연구기관과의 협의를 통해 물 재해 관리 시나리오를 수립하고 그 대안을 제시하였으며, 적용 시나리오별 홍수피해 저감 효과를 분석하였다. 또한 향후 방재시설물까지 연계하여 운영효과를 분석할 수 있도록 구조화하였다. 개발된 물 재해 관리 시스템은 개선된 정보처리 및 분석시스템을 활용하여 종합적인 물 재해정보를 제공하고, 사전에 홍수위험 지역을 분석하여 유관기관과 공유할 수 있는 물 재해 관리 의사결정 지원시스템으로써 유용하게 활용될 수 있을 것이다.

  • PDF

A Study on Operation Control Technology Required for Introduction of Intelligent Sewage Treatment Plant (스마트 하수처리장 도입에 필요한 운전제어기술에 관한 연구)

  • Lee, Jiwon;Kim, Yuhyeon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.24 no.1
    • /
    • pp.38-43
    • /
    • 2022
  • Smart sewage treatment plant means creating a safe and clean water environment by establishing an ICT-based real-time monitoring, remote control management and intelligent system for the entire sewage treatment process. The core technology of such a smart sewage treatment plant can be operation control technology using measuring instruments. This research team analyzed and suggested the operation control technologies necessary for the establishment of the intelligent business by referring to the intelligent research projects of the sewage treatment plant in progress in Korea. As a result of the analysis, a total of six removal technologies were presented, including control by scale, reflow water control, linked treated water control, chemical quantity control, winter operation control, and total organic carbon control. By size, standards that can be classified into small and medium-sized large-scale are presented, and in the case of reflow water control, the location of water quality and flow sensors capable of managing reflow water is suggested. In the case of the linked treated water control, the influence and control points of the linked treated water on the sewage treatment plant were presented, and in the case of the chemical injection volume control, a system capable of optimizing the amount of chemical injection according to the introduction of an intelligent sewage treatment plant was presented. In the case of winter operation, the sensors and pumps to be controlled are suggested when considering the decrease in nitrification due to the decrease in water temperature. In the case of total organic carbon control, an interlocking system considering the total amount of pollution in the future was proposed. These operation control scenarios are expected to be used as basic data to be used in intelligent sewage treatment algorithms and scenarios in the future.

Development of Flow Loop System to Evaluate the Performance of ESP in Unconventional Oil and Gas Wells (비전통 유·가스정에서 ESP 성능 평가를 위한 Flow Loop 시스템 개발)

  • Sung-Jea Lee;Jun-Ho Choi;Jeong-Hwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.7-15
    • /
    • 2023
  • The electric submersible pump (ESP) has been operating in production wells around the world because of its high applicability and operational efficiency among artificial lift techniques. When operating an ESP in a reservoir, variables such as temperature, pressure, gas/oil ratio, and flow rate are factors that affect ESP performance. In particular, free gas in the production fluid is a major factor that reduces the life and operational efficiency of ESP. This study presents the flow loop system which can implement the performance and damage tests of ESP considering field operating conditions to quantitatively analyze the variables that affect ESP performance. The developed apparatus in an integrated system that can diagnose the failure and causes of ESP, and detect leak of tubing by linking ESP and tubing as one system. In this study, the flow conditions for stable operation of ESP were identified through single phase and two phase flow experiments related to evaluation for the performance of ESP. The results provide the basic data to develop the failure prediction and diagnosis program of ESP, and are expected to be used for real-time monitoring for optimal operating conditions and failure diagnosis for ESP operation.

A Design of PLL and Spread Spectrum Clock Generator for 2.7Gbps/1.62Gbps DisplayPort Transmitter (2.7Gbps/1.62Gbps DisplayPort 송신기용 PLL 및 확산대역 클록 발생기의 설계)

  • Kim, Young-Shin;Kim, Seong-Geun;Pu, Young-Gun;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.21-31
    • /
    • 2010
  • This paper presents a design of PLL and SSCG for reducing the EMI effect at the electronic machinery and tools for DisplayPort application. This system is composed of the essential element of PLL and Charge-Pump2 and Reference Clock Divider to implement the SSCG operation. In this paper, 270MHz/162MHz dual-mode PLL that can provide 10-phase and 1.35GHz/810MHz PLL that can reduce the jitter are designed for 2.7Gbps/162Gbps DisplayPort application. The jitter can be reduced drastically by combining 270MHz/162MHz PLL with 2-stage 5 to 1 serializer and 1.35GHz PLL with 2 to 1 serializer. This paper propose the frequency divider topology which can share the divider between modes and guarantee the 50% duty ratio. And, the output current mismatch can be reduced by using the proposed charge-pump topology. It is implemented using 0.13 um CMOS process and die areas of 270MHz/162MHz PLL and 1.35GHz/810MHz PLL are $650um\;{\times}\;500um$ and $600um\;{\times}\;500um$, respectively. The VCO tuning range of 270 MHz/162 MHz PLL is 330 MHz and the phase noise is -114 dBc/Hz at 1 MHz offset. The measured SSCG down spread amplitude is 0.5% and modulation frequency is 31kHz. The total power consumption is 48mW.

Field Survey on Smart Greenhouse (스마트 온실의 현장조사 분석)

  • Lee, Jong Goo;Jeong, Young Kyun;Yun, Sung Wook;Choi, Man Kwon;Kim, Hyeon Tae;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.27 no.2
    • /
    • pp.166-172
    • /
    • 2018
  • This study set out to conduct a field survey with smart greenhouse-based farms in seven types to figure out the actual state of smart greenhouses distributed across the nation before selecting a system to implement an optimal greenhouse environment and doing a research on higher productivity based on data related to crop growth, development, and environment. The findings show that the farms were close to an intelligent or advanced smart farm, given the main purposes of leading cases across the smart farm types found in the field. As for the age of farmers, those who were in their forties and sixties accounted for the biggest percentage, but those who were in their fifties or younger ran 21 farms that accounted for approximately 70.0%. The biggest number of farmers had a cultivation career of ten years or less. As for the greenhouse type, the 1-2W type accounted for 50.0%, and the multispan type accounted for 80.0% at 24 farms. As for crops they cultivated, only three farms cultivated flowers with the remaining farms growing only fruit vegetables, of which the tomato and paprika accounted for approximately 63.6%. As for control systems, approximately 77.4% (24 farms) used a domestic control system. As for the control method of a control system, three farms regulated temperature and humidity only with a control panel with the remaining farms adopting a digital control method to combine a panel with a computer. There were total nine environmental factors to measure and control including temperature. While all the surveyed farms measured temperature, the number of farms installing a ventilation or air flow fan or measuring the concentration of carbon dioxide was relatively small. As for a heating system, 46.7% of the farms used an electric boiler. In addition, hot water boilers, heat pumps, and lamp oil boilers were used. As for investment into a control system, there was a difference in the investment scale among the farms from 10 million won to 100 million won. As for difficulties with greenhouse management, the farmers complained about difficulties with using a smart phone and digital control system due to their old age and the utter absence of education and materials about smart greenhouse management. Those difficulties were followed by high fees paid to a consultant and system malfunction in the order.