• Title/Summary/Keyword: 연돌 효과

Search Result 77, Processing Time 0.02 seconds

A Study on the Vertical Flue Duct for Application of Small Wind Power System in High-Rise Apartments (초고층 공동주택의 소형풍력발전시스템 적용을 위한 수직연도 활용에 관한 연구)

  • Kim, Seong-Yong;Lee, Yong-Ho;Park, Jin-Chul;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.116-125
    • /
    • 2011
  • This study examined vertical shafts in high-rise apartments of the old high-rise buildings, reviewed the possibility of using flue ducts, and analyzed airflow patterns according to pressure differences between in and out side of flue ducts through computational fluid dynamics(CFD). The resulting conclusions are as follows: 1) The analysis results of airflow according to the stack effect of flue ducts show that smaller-diameter flue ducts(${\phi}1.2m$) would be morefavorable in increasing downward wind velocity than bigger-diameter ones(${\phi}1.6m$) and that the introduction ducts for outside air should be more than 50% of flue duct diameter to obtain a downward wind velocity higher than $3.0^m/s$ that is the minimum blade wind velocity of a small domestic wind generator. 2) The optimal installation location of a bypass introduction duct is the neutral plane of a flue duct or lower. When the diameter of the upper duct is bigger than that of the lower duct, it will generate more effects on the increase of downward wind velocity in flue ducts.

Wind Castle: Typhoon Control by the Natural Intelligence of Batdam(1.5m) II (윈드캐슬: 밭담(1.5m)의 자연지능에 의한 태풍 제어 II)

  • Lee, Moon-Ho;Kim, Jeong-Su
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.113-119
    • /
    • 2020
  • This paper proved the reason why the Batdam does not collapse in the 50m/s typhoon by the Circulation of the Stack Effect and traced the correlation with crops in spring, summer, autumn and winter. Batdam, which is built with oedam, is a magic wall wich is played the role of 3rd layer over 22,000km, when stacked in a field, has the inertia like a linear motion of constant velocity and resists winds no matter how strong it blows. We analyzed the reason of Batdam 1.5 meters, Oreum 200 times of Batdam, and Hallasan 1,300 times Batdam, and analyzed the resonance of the characteristic function. In this paper, we adapted to natural climate change, and we built a batdam to derive the height of the batdam and neutral plane for farming according to the seasonal characteristics, and designed the relationship between natural intelligence control.

A Study on Concurrent Fire Appearance through Openings (개구부를 통한 동시다발적인 화재성상에 관한 연구)

  • Min, Se-Hong;Lee, Jae-Moon
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.90-96
    • /
    • 2012
  • Since vertical flame spread speed on exterior materials is much faster than horizontal fire, analysis of its fire characteristic is required. For the study of vertical fire pattern created by penetrating windows or openings from the exterior wall of buildings, the research is based on the fire simulation for an aluminum-complex-panel with which is commonly used as exterior materials and consists of polyethylene core material. As a result, the flame reaches the 2nd floor after 135 seconds in the early stage of fire, the 10the floor after 470 seconds and the 30th floor, the highest floor, after 711 seconds. The result shows that fire spread abruptly expands on upper floor due to stack effect of a turbulent flow or exterior materials. In consequence, we can confirm a serious problem that a conflagration of a building through an opening that is equipped with the exterior-materials spreads into interior of building at that same time.

Fire Experiment for a Water Curtain Nozzle in a Double Glazed Curtain Wall System (유리커튼월 수막시스템 분무헤드의 화재 실험 연구)

  • Kim, Sung-Won;Nam, Jiwoo;Cho, Seongwook;Ryou, Hong-Sun;Nam, Jun-Seok;Kim, Dong-Joon
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.31-40
    • /
    • 2016
  • Recently, a curtain wall system was applied to skyscrapers to prevent fire spreading along the vertical direction due to stack effect and outside air flow when a fire breaks out in skyscraper. Conventional sprinklers cannot prevent the spread of fire to the upstairs areas, which increases the loss of life and property. In this study, a water curtain nozzle that creates wider water coverage on the surface of glass and can prevent the spread of fire to the upstairs areas was developed. The spray pattern of the water curtain nozzle was compared with that of a sprinkler to determine performance of the water curtain nozzle. A fire experiment was constructed on the second floor to verify performance of the water curtain nozzle in preventing the spread of fire to the upstairs areas. The fire and watering experiment proved that the water curtain nozzle prevented more effectively the spread of fire than the conventional sprinkler. The position of first crack and critical temperature of fracture were also analyzed using numerical analysis.

A Study on the Wind Power Generation Using Vertical Exhaust Air Duct of the High-Rise Apartments (초고층 공동주택의 주방.욕실 배기 풍속을 풍력발전에 활용하는 방안)

  • Lee, Yong-Ho;Kim, Seong-Yong;Hwang, Jung-Ha;Park, Jin-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.1-10
    • /
    • 2012
  • The purpose of this study was to promote the utilization of wind velocity of kitchen and bathroom exhaust ducts for wind power generation in high-rise apartments. The research content can be summarized as follows: 1) Nine high-rise apartments were examined for the installation of kitchen and bathroom exhaust ducts located in the pipe shaft (PS) section. After selecting simulation candidates, a simulation was performed with the STAR-CCM+ Ver 5.06 program. 2) Of nine high-rise apartments, seven had kitchen and bathroom exhaust ducts, whose cross section was in the range of $0.16m^2{\sim}0.4m^2$. The area ratio between the exhaust ducts and PS section (cross section of exhaust duct/area of PS section ${\times}$ 100) was on average 3.2%. 3) The simulation results were analyzed. As a result, the smaller cross section kitchen and bathroom exhaust ducts had, the more advantages there were for increasing exhaust wind velocity. If an out air inlet duct is installed to the old kitchen and bathroom exhaust ducts, it will increase exhaust wind velocity by 3.01~3.98m/s and contribute to the proper wind velocity level (3.0m/s). 4) When the simultaneous usage rate between the kitchen and bathroom exhaust fan increased from 20% to 60%, exhaust wind velocity increased. The "entire house holds" condition for exhaust fan operation provided more even exhaust wind velocity than the "some house holds" condition. 5) Exhaust wind velocity increased in the order of amplified (T-3), induced (T-2) and vertical (T-1) top of kitchen and bathroom exhaust ducts. Of them, the amplified type (T-3) was under the least influence of external wind velocity and thus the most proper for kitchen and bathroom exhaust duct tops.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015 (설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.