본 연구는 첨단기술 제품들에서 볼 수 있는 지속적인 기술혁신으로 인하여 새롭게 시장에 진입하는 신규세대 제품과 이전세대 제품들의 동태적 판매량을 묘사하고 예측할 수 있는 모형들을 제시하고 비교·분석하는데 목적이 있다. 본 논문에서는 Bass(1969)의 내구성 소비재에 대한 최초구매 확산모형을 기반으로 하여 개발된 기술적 대체를 반영한 확산모형들, 즉 Norton and Bass(1987), Mahajan and Muller(1996), Jun and Park(1999)의 모형들의 이론적인 틀과 가정들을 비교·분석함으로써 기존 모형과는 변수와 계수의 의미가 다른 모형을 제시하고, 전세계 DRAM 반도체 출하량 자료를 사용하여 모형들 간의 경험적 비교를 행하였다. Jun and Park(1999)이 전세계 DRAM 반도체 출하량 자료에 적용하기 위하여 새롭게 개발한 타입 II 모형(즉 JP2)은 본 연구의 경험적 비교의 결과에 비추어 볼 때 그들의 타입 I 모형이 취한 가정들을 변화시켜서 모형을 구성하는 변수들과 계수들의 의미가 달라진 JPI 모형 또는 Norton and Bass(1987)의 모형(즉 NB1)보다 실제 적용에 있어서 열등할 수 있다는 것을 본 연구는 보여주었다.
본 연구과제는 개념(Idea)이 간단하고 수행방법이 단순함에도 불구하고 과제 수행에 약 2년이 라는 오랜 기간이 소요되었다. 왜냐하면 오랜시간에 걸쳐 여러번 모형선의 변형도를 측정하여야 되었기 때문이다. 그러나 본 연구과제는 극히 성공적으로 수행 완료되었다. 향후 본 연구과제 수행을 통하여 개발된 방법을 될수록 많은 모형선 제작에 적응할 예정이며 이로 인하여 다음과 같은 중요한 파급 효과를 기대할 수 있다. 첫째, 모형선 제작비의 대폭 절감으로 모형시험 경 비를 크게 감소시킬 수 있다. 둘째, 모형시험 시간을 크게 단축시킬 수 있기 때문에 설계실을 신속히 지원해 줄 수 있을 뿐만 아니라 주어진 시간내에 더 많은 연구업무를 수행할 수 있다. 이것은 무형의 효과이나 실제적으로 모형시험 경비의 절감 효과보다도 더 중요한 것이라고 생 각한다. 본 연구과제의 개념은 극히 간단한 것이지만 세계 최초의 발상 및 시도이며 성공적으로 연구 업무가 수행되어 전세계에 현존하는 어떠한 모형선 제작 방법보다도 우수한 방법이 개발 되었다고 자부하는 바이다. 본 연구를 통하여 개발된 모형선 제작 방법은 현재 특허 신청중에 있다.
과거 많은 연구에서 다수의 모형의 결과를 이용한 앙상블 방법론은 인공지능 모형 (artificial neural network)의 예측 능력에 향상을 갖고 온다 논하였다. 본 연구에서는 미계측유역의 저수량(low flow)의 예측을 위하여 Jittering을 기반으로 한 인공지능 모형을 제시하고자 한다. 기본적인 방법론은 설명변수들에게 백색 잡음(white noise)를 삽입하여 훈련되는 자료를 증가시키는 것이다. Jittering을 기반으로 한 인공지능 모형에 대한 효과를 검증하기 위하여 본 연구에서는 Multi-output neural network model을 기반으로 모형을 구축하였다. 다음으로 Jittering을 기반으로 한 앙상블 모형을 variable importance measuring algorithm과 결합시켜서 유역특성치와 예측되는 저수량의 특성치들의 관계를 추론하였다. 본 연구에서 사용되는 방법론들의 효용성을 평가하기 위해서 미동북부에 위치하고 있는 총 207개의 유역을 사용하였다. 결과적으로 본 연구에서 제시한 Jittering을 기반으로 한 인공지능 앙상블 모형은 단일예측모형 (single modeling approach)을 정확도 측면에서 우수한 것으로 확인되었다. 또한, 적은 숫자의 앙상블 모형에서도 그 정확성이 단일예측모형보다 우수한 것을 확인하였다. 마지막으로 본 연구에서는 유역특성치들의 효과가 살펴보고자 하는 저수량의 특성치들에 따라서 일관적으로 영향을 미치거나 그 중요도가 변화하는 것을 확인하였다.
현재 홍수예경보에서는 강우-유출 모형, 통계학적 모형 등 다양한 모형을 사용하고 있으며, 우리나라에서는 특히 저류함수모형을 사용하여 홍수예보를 수행하고 있다. 이에 본 연구에서는 저류 함수모형과 Tank 모형, SSARR 모형을 이용해 금강유역의 미호천 유역, 일본의 Kusaki 댐 유역, 베트남의 Ta Trach 유역에 대하여 홍수모의예측을 수행하였다. 강우-유출 모형인 저류함수모형과 Tank 모형, SSARR 모형의 경우 매개변수 보정에 대한 연구를 추가하여 홍수예측 모형의 효율성의 증대를 도모 하였다. 매개변수 보정을 위하여 유전자 알고리즘, Pattern Search multi-start, SCE-UA등의 최적화 기법들을 이용하였고, 목적함수로는 WSSR과 SSR를 적용하여 그 결과를 비교, 분석하였다.
본 연구에서는 변동계수를 이용하여 DEA 모형의 변별력 평가에 적용할 수 있는 새로운 평가기준을 제시하였다. 변별력 평가를 위해 기존 연구에서 제시한 중요도와 본 연구에서 제안한 변동계수를 이용하여 변별력을 분석하였다. 다양한 DEA 모형들 중 변별력 평가를 위해 CCR-DEA, BCC-DEA, entropy, bootstrap, super efficiency, cross efficiency DEA 모형을 선정하고 실증분석을 실시하였다. 모형들의 순위상관관계를 파악하기 위해서 CCR 모형과 BCC 모형의 효율성 값과 entropy, bootstrap, super efficiency, cross efficiency 모형의 효율성 값들 간에 순위상관분석을 실시하였다. 본 연구를 통해 도출된 연구결과를 요약하면 다음과 같다. 첫째, 중요도와 변동계수를 이용한 모형들의 변별력 순위가 동일한 것으로 분석되어 변동계수를 DEA 모형의 변별력 평가기준으로 이용할 수 있다는 것이다. 둘째, 본 연구의 실증분석 결과에 따르면 4개 모형 중 super efficiency 모형이 변별력이 가장 높은 것으로 분석되었다. 셋째, CCR 모형과 순위상관관계가 가장 높은 모형은 super efficiency 모형으로 나타났고, BCC 모형과 순위상관관계가 가장 높은 모형도 super efficiency 모형으로 분석되었다.
차량추종모형은 차선변경모형과 함께 미시적 시뮬레이션 모형의 핵심 모형으로서 정확한 차량추종모형의 적용은 시뮬레이션 모형 분석결과의 신뢰성에 영향을 미친다. 기존의 차량추종모형은 대부분 가속상황과 감속상황에 동일한 모형을 적용하거나 자극부문과 민감도 부분은 거의 동일한 형태를 취하고 있으며, 가상자료를 토대로 모형이 개발되었다. 본 연구의 목적은 첫째, 모형을 추정하기 위한 연구체계를 구성하고, 둘째, 이러한 연구체계를 이용하여 신호교차로 미시적 시뮬레이션에 직접 적용이 가능한 차량추종모형을 정립하는 데 있다. 본연구에서는 이를 위해서 신호교차로에서 미시적 실측자료를 수집하였으며, 수집된 자료에서 통계적 기법을 통해서 모형 추정에 적합한 자료를 구축하였다. 현장에서 실측된 이산적인 원시자료는 차량추종모형 추정에 직접 이용할 수 없다. 따라서, 이산적 원시자료를 모형추정에 적합한 자료로 구성하기 위하여 비선형 곡선적합 알고리즘을 이용하여 연속적인 궤적함수를 구성하였고, 이를 통해서 모형추정에 필요한 선두차량과 후행차량의 현재시점과 반응시간 이후 시점에서의 위치, 순간 가속도와 순간속도 등을 도출하였다. 본 연구에서는 차량추종상황을 가속상황, 감속상황, 출발상황, 그리고 정지상황으로 구분하여 차량추종모형을 구축하였다. 가속상황과 감속상황에 대해서는 실측자료를 이용하여 모형을 추정하였으며, 출발상황과 정지상황에 대해서는 추정된 가/감속상황의 모형을 바탕으로 출발상황과 정지상황에서의 차량행태를 설명할 수 있는 모형을 구축하였다 또한, 민감도와 자극부분을 새롭게 정의하여 각 상황별로 미시적 실측자료를 이용하여 모형을 추정하였다. 이렇게 추정된 모형들 중에서 통계적 기법과 실측치와의 비교를 통해서 가장 적합한 모형을 선택하였다. 선택된 모형은 통계적 검정, 가상자료 그리고 실측치와의 비교를 통해서 분석하였으며, 분석결과 구축모형의 적용성은 우수한 것으로 분석되었다.
본 연구의 목적은 VECM(Vector Error Correction Model)과 인공지능모형(Artificial Neural Networks)을 이용하여 우리나라 증권시장과 거시경제 변수들과의 장기적 관계에 대한 설명력을 비교해보고자 함에 있다. VECM이 APT(Arbitrage Pricing Theory)에 기초를 둔 선형동학모형이라고 한다면, 인공지능모형은 비모수적 비선형모형이라는 점에서, 두 방법론의 분석결과를 직접 비판하는 것은 의미있는 연구라고 할 수 있다. 인공지능모형을 주로 활용하는 선행연구들에 의하면, 증권시장은 시장의 특이패턴들로 인해 계량경제학적 접근인 선형 모형보다는 인공지능모형을 통해 증권시장의 움직임을 설명하고 예측하는 것이 더 바람직할 수도 있다는 것이다. 따라서, 본 연구에서는 VECM분석에서 자료의 안정성을 검증하고, 공적분 백터를 발견한 이후, 장기적 균형관계의 실증적 분석을 하였다. 그리고, 인공지능모형에서는 delta rule과 Sigmoid 함수를 이용한 GRNN(General Regression Neural Net)과 Back-Propagation등의 방법들을 활용하였다. 이러한 분석결과, Back-Propagation 모형이 다른 모든 모형들보다도 더 우수한 설명력을 보여주고 있었다. 이러한 결과들은 인공지능모형이 동태적인 선형 모형보다도 더 우수한 설명력을 제공할 수 있는 가능성을 보여주고 있었다.
최근에 딥 러닝(Deep learning) 기반의 많은 방법들이 수문학적 모형 및 예측에서 의미있는 결과를 보여주고 있지만 더 많은 연구가 요구되고 있다. 본 연구에서는 수자원의 가장 대표적인 모델링 구조인 강우유출의 관계의 규명에 대한 모형을 Long Short-Term Memory (LSTM) 기반의 변형 된 방법으로 제시하고자 한다. 구체적으로 본 연구에서는 반응변수인 유출량에 대한 직접적인 고려가 아니라 그의 1차 도함수 (First derivative)로 정의되는 Delta기반으로 모형을 구축하였다. 또한, Attention 메카니즘 기반의 모형을 사용함으로써 강우유출의 관계의 규명에 있어 정확성을 향상시키고자 하였다. 마지막으로 확률 기반의 예측를 생성하고 이에 대한 불확실성의 고려를 위하여 Denisty 기반의 모형을 포함시켰고 이를 통하여 Epistemic uncertainty와 Aleatory uncertainty에 대한 상대적 정량화를 수행하였다. 본 연구에서 제시되는 모형의 효용성 및 적용성을 평가하기 위하여 미국 전역에 위치하는 총 507개의 유역의 일별 데이터를 기반으로 모형을 평가하였다. 결과적으로 본 연구에서 제시한 모형이 기존의 대표적인 딥 러닝 기반의 모형인 LSTM 모형과 비교하였을 때 높은 정확성뿐만 아니라 불확실성의 표현과 정량화에 대한 유용한 것으로 확인되었다.
본 연구는 Wilcoxon Rank Sum Test 기법을 이용한 자동 돌발상황 검지 모형을 개발하는 것이다. 본 연구의 수행을 위하여 고속도로에 설치된 루프 차량 검지기(Loop Vehicle Detection System)에서 수집된 점유율 데이터를 사용하였다. 기존의 검지모형은 산정하기가 까다로운 임계치에 의하여 돌발상황을 검지하는 방식이었다. 반면 본 연구 모델은 위치와 시간대 교통 패턴에 관계없이 모형을 일정하게 적용하며, 지속적으로 돌발상황 지점과 상·하류의 교통패턴을 비교 검정 기법인 Wilcoxon Rank Sum Test 기법을 사용하여 돌발상황 검지를 수행하도록 하였다. 연구모형의 검증을 위한 테스트 결과 시간과 위치에 관계없이 정확하고 빠른 검지시간(돌발 상황 발생 후 2∼3분)을 가짐을 알 수 있었다. 또한 기존의 모형인 APID, DES, DELOS모형과 비교검증을 위하여 검지율 및 오보율 테스트를 수행한 결과 향상된 검지 능력(검지율 : 89.01%, 오보율 : 0.97%)을 나타남을 알 수 있었다. 그러나 압축파와 같은 유사 돌발상황이 발생되면 제대로 검지를 하지 못하는 단점을 가지고 있으며 향후 이에 대한 연구가 추가된다면 더욱 신뢰성 있는 검지모형으로 발전할 것이다.
정사영상 생성, 도시 공간의 모형화 등 도면화의 다양한 응용분야에 적용을 위해서는 위성 영상으로부터 수치고도모형을 생성하는 것은 중요하며, SPOT-5, IKONOS, QUICKBIRD, ORBVIEW 등의 고해상도 위성영상은 효율적이고 경제적으로 수치고도모형을 생성할 수 있는 정보를 제공하고 있다. 그러나, 이들 고해상도 위성영상으로부터 수치고도모형을 생성하기 위해서는 센서모형화, 에피폴라 영상 생성 그리고 영상정합에 대한 사전지식이 필요하다. 이들 중 에피폴라 영상생성은 중요한 인자이며 이에 대한 연구는 아직 미흡한 실정이다. 뿐만 아니라, IKONOS 위성영상으로부터 수치고도모형을 생성하는 연구는 다항식비례모형에 기반한 연구가 주로 이루어졌다. 이에 본 연구에서는 센서 독립적이면서 적은 수의 기준점만으로 센서모형화와 에피폴라 영상생성이 가능한 평행투영모형을 이용하여 수치고도모형을 생성하는 일련의 처리과정을 새롭게 제안하였다. 제안된 방법론은 IKONOS 위성영상을 이용하여 적용하고 평가하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.