• 제목/요약/키워드: 연관 마이닝

검색결과 489건 처리시간 0.035초

연관 분류 마이닝 기법을 활용한 지식기반 신체활동 평가 모델 (A Knowledge Based Physical Activity Evaluation Model Using Associative Classification Mining Approach)

  • 손창식;최락현;강원석
    • 대한임베디드공학회논문지
    • /
    • 제13권4호
    • /
    • pp.215-223
    • /
    • 2018
  • Recently, as interest of wearable devices has increased, commercially available smart wristbands and applications have been used as a tool for personal healthy management. However most previous studies have focused on evaluating the accuracy and reliability of the technical problems of wearable devices, especially step counts, walking distance, and energy consumption measured from the smart wristbands. In this study, we propose a physical activity evaluation model using classification rules, induced from the associative classification mining approach. These rules associated with five physical activities were generated by considering activities and walking times in target heart rate zones such as 'Out-of Zone', 'Fat Burn Zone', 'Cardio Zone', and 'Peak Zone'. In the experiment, we evaluated the prediction power of classification rules and verified its effectiveness by comparing classification accuracies between the proposed model and support vector machine.

연관 마이닝과 고객 선호도 기반의 인터넷 상품 검색 시스템 설계 및 구현 (Design and Implementation of Product Searching System on Internet using the Association Mining and Customer's Preference)

  • 황현숙;어윤양
    • Asia pacific journal of information systems
    • /
    • 제12권1호
    • /
    • pp.1-16
    • /
    • 2002
  • Most of searching systems used by shopping-mall provide too much information for user requirements or fail to provide appropriate items reflecting customer's preference. This paper aims to design and implement the product searching systems based on customer preference which will enable efficient product selection in the internet shopping-mall. The proposed system consists of user/provider interface, searching and model agent, data management system, and model management system. Especially, we construct the searching pattern database to support fast search using association mining method. And this system includes the customer-oriented decision model which shows the highly preferred products. Input weight value per attribute and preference level should be needed to compute priority grade of preference.

통계 및 데이터마이닝 기법을 이용한 웹 사이트 분석 (Analysis of E-biz Site Using Statistics and Data Mining Techniques)

  • 류창수;서용무
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 2001년도 춘계 Conference: CRM과 DB응용 기술을 통한 e-Business혁신
    • /
    • pp.369-387
    • /
    • 2001
  • 인터넷 기술의 발달과 인터넷 비즈니스의 발전으로 인해 오늘날 사람들은 더욱 많은 시간을 인터넷 상에서 보내고 있다. 사용자가 기업의 웹 사이트를 방문한 기록은 웹 로그파일이라는 형태로 기업의 서버에 남게 되는데 이러한 로그 파일을 이용해 고객의 행동을 더욱 잘 이해하는 것이 매우 중요한 경쟁력의 요소로 자리 잡게 되었다. 이제까지는 웹 로그를 분석하기 위해 웹 로그 분석 도구를 이용해 왔는데, 경영 의사 결정에 도움이 되는 지식을 발견하기보다는 단순한 기술적인 통계량을 구하는데 그쳤다. 본 연구에서는 통계와 데이터마이닝 기법을 웹 데이터에 적용하여 경영 의사 결정에 도움이 되는 의미 있는 정보를 추출한다. 이를 위해 실제 인터넷 기업의 데이터를 기반으로 하여 대량 데이터를 데이터마이닝을 위해 전처리 하는 과정과 준비된 데이터를 분석하는 과정을 소개한다. 웹 사이트의 분석은 경영 지식을 찾아내기 위한 과정으로 개별 사이트가 처한 상황에 따라 분석과정이 상이해 질 수 있기 때문에 실제 기업의 데이터를 가지고 분석해 나가는 과정을 보이는 것은 의미 있는 연구라 생각된다.

  • PDF

시맨틱 웹에서 다중 혼합필터링을 이용한 개인화된 의상 코디 시스템 (Personalized Apparel Coordi System using Multiple Hybrid-Filtering on Semantic Web)

  • 은채수;송창우;이승근;이정현
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.178-182
    • /
    • 2006
  • 인터넷과 웹이 일상생활의 일부가 되면서 온라인상에는 방대한 양의 정보가 쌓이게 되었다. 이러한 흐름 속에서 정보의 양은 급속도로 늘어나는 현상을 보이며, ‘개인화’ 를 통해 수많은 데이터들 사이에서 원하는 정보를 자동으로 찾아내는 기술의 중요성이 부각되고 있다. 이를 ‘추천시스템’ 이라 부르며, 내용기반 필터링과 협력적 필터링 등의 연구가 활발히 이루어지고 있다. 그러나 사용자에게 가장 중요한 영향을 미치는 또래의 선호도, 지역, 시대 등의 복합적인 환경을 반영하는데 아직까지 어려움을 지니고 있다. 따라서 본 논문에서는 기존의 필터링들을 조합하고 좀더 편리하게 정보를 공유하고 학습할 수 있는 시맨틱 웹에서 연관 이웃 마이닝 기법을 통해 개인화된 추천 시스템을 설계한다. 생활에서 흔히 접할 수 있는 의상을 다양한 사용자에게 특화되어 코디해주는 시스템을 웹에서 제공한 결과 불필요한 검색시간이 줄어들고 사용자의 피드백을 통해 점차 만족도가 향상됨을 알 수 있었다.

  • PDF

인문전산학 활용을 위한 데이터마이닝기법 (Data Mining Technology for Application in Humanistic Computing)

  • 곽호형;방혜자
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 춘계학술발표대회
    • /
    • pp.593-596
    • /
    • 2005
  • 데이터마이닝은 대량의 실제 데이터로부터 이전에 잘 알려지지는 않았지만 묵시적이고 잠재적으로 유용한 정보를 추출하는 작업으로, 본 논문은 최근 인문학 정보 자료가 전산화되고 있는 가운데 대량의 정보와 특정 체계를 갖춘 ‘조선왕조실록’ 전산자료를 분석하고 기존의 단순한 정보 검색이 아닌 데이터마이닝 기법을 적용한 상세하고 예측가능 한 정보자료 추출법을 제시한다. 먼저 텍스트화 되어 있는 컨텐츠를 형태소분석기법을 사용하여 색인어를 추출하고 집계를 낸다. 질의어와 유관한 색인어의 군집정도와 출현시점을 분석하는데, 사용된 마이닝 기법은 연관규칙분석과 클러스터링 분석기법이다. 최종 결과치는 기존의 인문학연구 결과물과 비교하여 그 정확도를 분석해 보인다.

  • PDF

상품리뷰요약을 위한 대체어 자동추출 (Automatic Extraction of Alternative Words for Product Review Summarization)

  • 안미희;백종범;이수원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.501-503
    • /
    • 2012
  • 오피니언 마이닝에서 특징기반으로 상품평을 요약할 때, 동일한 상품의 같은 특징에 대한 사용자의 표현이 일치하지 않아 같은 특징을 다른 것으로 인식하는 오류가 발생되어 효과적인 분석을 하는데 어려움이 있다. 본 연구에서는 이러한 문제점을 해결하기 위하여 온라인쇼핑몰의 상품평에서 명사와 형용사쌍 말뭉치를 이용하여 연관단어뭉치를 추출하고, 상관성이 높은 형용사를 각 명사의 특징으로 이용하여 대체어 목록을 자동으로 추출하는 방법을 제안한다.

수량적 속성을 포함하는 항목 제약을 고려한 연관규칙 마이닝 앨고리듬 (An Association Discovery Algorithm Containing Quantitative Attributes with Item Constraints)

  • 한경록;김재련
    • 산업경영시스템학회지
    • /
    • 제22권50호
    • /
    • pp.183-193
    • /
    • 1999
  • The problem of discovering association rules has received considerable research attention and several fast algorithms for mining association rules have been developed. In this paper, we propose an efficient algorithm for mining quantitative association rules with item constraints. For categorical attributes, we map the values of the attribute to a set of consecutive integers. For quantitative attributes, we can partition the attribute into values or ranges. While such constraints can be applied as a post-processing step, integrating them into the mining algorithm can reduce the execution time. We consider the problem of integrating constraints that are boolean expressions over the presence or absence of items containing quantitative attributes into the association discovery algorithm using Apriori concept.

  • PDF

가상상점에서 고객 행위 연관성 분석을 위한 데이터 마이닝 기법 (A Data Mining Technique for Customer Behavior Association Analysis in Cyber Shopping Malls)

  • 김종우;이병헌;이경미;한재룡;강태근;유관종
    • 한국전자거래학회지
    • /
    • 제4권1호
    • /
    • pp.21-36
    • /
    • 1999
  • Using user monitoring techniques on web, marketing decision makers in cyber shopping malls can gather customer behavior data as well as sales transaction data and customer profiles. In this paper, we present a marketing rule extraction technique for customer behavior analysis in cyber shopping malls, The technique is an application of market basket analysis which is a representative data mining technique for extracting association rules. The market basket analysis technique is applied on a customer behavior log table, which provide association rules about web pages in a cyber shopping mall. The extracted association rules can be used for mall layout design, product packaging, web page link design, and product recommendation. A prototype cyber shopping mall with customer monitoring features and a customer behavior analysis algorithm is implemented using Java Web Server, Servlet, JDBC(Java Database Connectivity), and relational database on windows NT.

  • PDF

데이타 마이닝에서 기존의 연관 규칙을 갱신하는 앨고리듬 개발 (An Algorithm for Updating Discovered Association Rules in Data Mining)

  • 이동명;지영근;황종원;강맹규
    • 산업경영시스템학회지
    • /
    • 제20권43호
    • /
    • pp.265-276
    • /
    • 1997
  • There have been many studies on efficient discovery of association rules in large databases. However, it is nontrivial to maintain such discovered rules in large databases because a database may allow frequent or occasional updates and such updates may not only invalidate some existing strong association rules but also turn some weak rules into strong ones. The major idea of updating algorithm is to resuse the information of the old large itemsets and to integrate the support information of the new large itemsets in order to substantially reduce the pool of candidate sets to be re-exmained. In this paper, an updating algorithm is proposed for efficient maintenance of discovered assocation rules when new transaction data are added to a transaction database. And superiority of the proposed updating algorithm will be shown by comparing with FUP algorithm that was already proposed.

  • PDF

관상동맥질환 진단을 위한 데이터마이닝 기법 (Data Mining Approach for Diagnosing Cardiovascular Disease)

  • 박홍규;이헌규;류근호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 추계학술발표대회
    • /
    • pp.365-368
    • /
    • 2006
  • 심장의 활동을 기록한 심전도는 심장의 상태에 대한 가치 있는 임상 정보를 제공한다. 지금까지 심전도를 이용한 심장 질환 진단 알고리즘에 대한 많은 연구가 진행되어 왔으나, 심장 질환에 대한 진단 결과의 부 정확성으로 인해 외국의 진단 알고리즘을 사용하고 있다. 이 논문에서는 원시 심전도 데이터로부터 심장 질환 진단의 파라미터인 ST-segment 추출 방법을 제안한다. ST-segment는 관상동맥질환 예측에 활용되므로 데이터마이닝의 분류기법을 적용하여 질환을 예측한다. 또한 연관규칙 마이닝을 통해 환자들의 임상 데이터로부터 심장 질환자들의 임상적 특징을 예측한다.

  • PDF