본 논문에서는 연관 규칙 탐사 시스템을 설계하고 구현하였다. 본 시스템은 관계형 데이터베이스의 표준 질의어를 이용하여 사용자가 제시한 질의 조건을 만족하는 항목집합에 대해 다양한 형태의 연관규칙을 탐사하기 위한 시스템이다. 질의처리 모듈에서는 사용자가 제시한 조건을 만족하는 질의를 동적으로 구성하여, 연관 규칙 탐사를 위해 사용되는 대상 트랜잭션 데이타베이스의 범위를 조절할 수 있다. 연관 규칙을 발견하기 위한 후보 항목집합을 생성하기 위해 연관 규칙 탐사 알고리즘을 사용하였다. 연관 규칙 알고리즘에서는 한 트랜잭션 데이타에 대해 생성될 수 있는 후보 항목집합을 배열을 이용하여 처리하는 효율적인 방법을 제안하였다.
연관 규칙이 구매한 항목에 관심을 가져 구매 항목간의 규칙을 생성하는 것이라면 역 연관규칙은 구매하지 않은 항목에도 관심을 가짐으로써 더욱 효과적으로 데이터 마이닝을 하려는 시도이다. 역 연관규칙을 찾기 위한 기존의 방법들은 규칙의 일부분만 찾거나. 연관규칙을 찾는 알고리즘보다 더 복잡한 알고리즘의 사용으로 역 연관규칙을 찾는데 어려움이 있다. 이에 본 논문에서는 ITEM들 사이의 dependency를 이용하는 Boolean Analyzer를 사용하여 보다 간단한 과정으로 역 연관규칙을 생성하는 방법을 제시하고, 실험을 통하여 Boolean Analyzer로 역 연관규칙을 찾고 다른 알고리즘과 비교를 통해 보다 다양한 규칙을 찾을 수 있음을 보여준다.
대화형 환경에서 연관 규칙 탐사 문제는 동일한 데이터베이스에서 다른 최소 지지도로 반복적으로 연관 규칙을 탐사하는 것이다. 이 문제는 반복적으로 연관 규칙을 탐사한다는 사실만 기존의 연관 규칙 탐사와 다를 뿐 기존의 연관 규칙 탐사에서 발생하는 모든 문제를 포함한다. 본 논문은 전 단계에 계산된 후보 항목집합에 대한 정보를 이용함으로써 성능 향상을 가져오는 효율적인 알고리즘을 제안한다. 제안된 알고리즘은 대화형 환경에서 기존의 알고리즘과 수행 시간 측면에서 비교되었다. 성능 비교의 결과로부터 제안하는 알고리즘이 기존의 방법보다 약 10~30% 정도의 상대적 성능 향상 효과가 있음을 알 수 있었다.
연관규칙 탐사기법은 거래(사건) 속에 포함된 품목(항목)간의 연관관계를 발견하고자 할 때 사용하는 기법이며, 독특한 형태의 자료구조를 사용하는 다양한 연관규칙 알고리즘들이 제안되었다. 다양한 특성을 갖는 대용량의 데이터에 대해 효율적으로 연관규칙 탐사를 수행하기 위해서는 저장공간과 실행시간을 모두 고려해야 한다. 본 논문에서는 후보항목집합 발생과정 없이 압축빈발항목집합과 동적링크집합을 이용하여 저장공간 축소와 실행시간 개선을 동시에 고려한 연관규칙 알고리즘을 제안하며, 그 우수성을 증명하기 위해 연관규칙 탐사의 대표적인 자료 구조인 FP-struct, H-Struct와의 저장공간 비교 및 이들 저장구조를 사용하는 FP-growth, H-mine 알고리즘과의 실행시간을 비교한다.
본 연구에서는 일련의 연구에서 수집된 영작문 오류 유형의 정제된 자료를 토대로 연관 규칙을 생성하고, 학습을 통해서 효용성이 검증된 연관 규칙을 활용해서 영작문 데이터의 형태 통사 오류를 자동으로 탐지한다. 영작문 데이터에서 형태 통사 오류를 찾아내는 작업은 많은 시간과 자원이 소요되는 작업이므로 자동화가 필수적이다. 기존의 연구들이 통계적 모델을 활용한 어휘적 오류에 치중하거나 언어 이론적 틀에 근거한 통사 처리에 집중하는 반면에, 본 연구는 데이터 마이닝을 통해서 정제된 데이터에서 연관 규칙을 생성하고 이를 검증한 후 형태 통사 오류를 감지한다. 이전 연구들에서는 이론적 틀에 맞추어진 규칙 생성이나 언어 모델 생성을 위한 대량의 코퍼스 데이터와 같은 다량의 지식 베이스 생성이 필수적인데, 본 연구는 적은 양의 정제된 데이터를 활용한다. 영작문 오류 유형의 형태 통사 연관 규칙을 생성하기 위해서 Apriori 알고리즘을 활용하였다. 알고리즘을 통해서 생성된 연관 규칙 중 잘못된 규칙이 생성될 가능성이 있으므로, 상관성 검정, 코사인 유사도와 같은 규칙 효용성의 통계적 검증을 활용해서 타당한 규칙만을 학습하였다. 이를 통해서 축적된 연관 규칙들을 영작문 오류를 자동으로 탐지하는 실험에 활용하였다.
본 연구에서는 시간 연관 규칙에 지수 평활법을 적용한 상품 추천 알고리즘을 제안한다. 시간 연관 규칙은 기존의 연관 규칙에 시간 개념을 적용한 연관 규칙이다. 본 연구에서는 과거 데이터 보다 최신의 데이터에 가중치를 더 부여한 지수 평활 시간 연관 규칙을 제안한다. 제안한 알고리즘은 시간 의존적인 데이터에 적용하여 시뮬레이션을 한 결과 지수 평활법을 적용한 시간 연관 규칙이 기존의 시간 연관 규칙보다 실행시간 면에서 다소 오래 걸리지만 상품 추천 측면에서 더 효과적이다.
연관규칙은 데이터 안에 존재하는 항목들간의 종속 관계를 찾아내는 것이다. 기존의 연구에서는 연관규칙 탐사 과정에서 발견항목 자체에만 관심을 두고 연구되어 왔다. 즉, 연관규칙 생성을 위한 후보 항목은 수량을 배제한 항목 대 수량비가 1:1인 상태에서 규칙을 발견하는 연구였다. 이것은 항목의 구매 수량에 관계없이 같은 가중치로 규칙을 발견하는 문제점을 갖고 있다. 두 번째 문제점은 연관규칙은 시간적 연장선상에서 발견되는 규칙이라 할 수 있다. 즉, 규칙을 발견하는 과정에서 모든 자료를 동일한 시간적 가중치를 두어 취급하는 것이다. 본 논문에서는 각각의 아이템을 (아이템, 수량)의 묶음 단위로 후보항목을 만들어 수량적 속성이 포함된 아이템 대 수량 비 1:n의 관계에서 규칙을 발견하는 방법을 제안한다. 또한 과거의 자료들을 이용하여 예측할 때 모든 자료를 동일하게 취급하기보다는 최근의 자료에 더 큰 비중을 주는 예측법을 사용하여 연관규칙 발견의 신뢰성을 높인다. 성능평가는 기존의 알고리즘과 비교하여 제안한 알고리즘의 성능향상 및 타당성을 보인다.
데이터베이스로부터 유용한 정보를 얻기 위해서 데이터마이닝을 사용하는데 많은 데이터들을 다루기 위해서는 좀 더 나은 성능의 데이터마이닝 기법이 필요하다. 연관규칙을 생성하는 기존의 Apriori 알고리즘은 많은 데이터베이스 접근과 많은 조인 횟수로 인하여 수행 속도의 저하를 가져오게 된다. 이를 개선하기 위하여 본 논문에서는 새로운 클러스터링 방법을 이용하여 클러스터링을 수행하고 각 클러스터의 연관규칙을 생성하게 된다. 본 연구의 방법을 이용하게 되면 기존 연관규칙 알고리즘으로 찾지 못했던 규칙도 생성가능하다.
데이더는 다양한 빈도 형태와 속성을 가지고 있으며 데이터의 연관 규칙 탐사 시 이러한 데이터의 빈도수를 고려할 수 있는 방법이 필요하다. 그러나 기존의 연관 규칙 탐사 알고리즘은 지지도와 신뢰도만을 가지고 데이터의 연관성을 발견하며 데이터들의 발생 빈도는 고려하지 않는다. 본 논문에서는 하위 단계의 데이터나 동일한 단계지만 상대적으로 발생 빈도가 적은 데이터들의 연관 규칙을 탐사할 수 있는 방법을 제안한다. 제안하는 방법은 데이터의 상대 지지도를 이용한 다단계 연관 규칙 탐사 기법을 수행함으로써 데이터의 발생 빈도를 고려한 연관 규칙을 탐사할 수 있다. 그리고 탐사된 연관 규칙은 마케팅 분야 등의 여러 응용에서 유용하게 이용될 수 있다.
컴퓨터 처리기술과 저장기술 그리고 인터넷 등의 영향으로 멀티미디어 데이터의 양은 급속하게 증가하지만 체계적으로 멀티미디어 데이터간의 연관규칙을 마이닝하는 연구는 초기 단계이다. 본 논문은 이미지 프로세싱 분야 및 내용기반 이미지 검색에 대한 기존 연구를 바탕으로 대형 영상 데이터 저장소에 저장된 이미지 데이터에서 재발생하는 항목간의 연관규칙을 찾으며 공간적 관계로 내용기반의 연관규칙을 마이닝하는 알고리즘을 제안한다. 제안된 연관규칙 탐색 알고리즘은 이미지의 색상, 질감, 모양 등 내용기반의 영상속성을 오브젝트 항목으로 하여 오브젝트가 이미지에서 재발생될 때를 이용, 이미지간의 연관규칙을 찾고 오브젝트들이 이미지에서 차지하고 있는 공간적 위치관계를 통해 드러나지 않는 이미지간의 연관규칙을 마이닝한다. 본 논문의 재발생 항목을 고려한 연관규칙 알고리즘은 Apriori 알고리즘보다 빈번한 항목 집합을 찾아내는데 더 높은 성능을 보인다는 것을 실험 을 통하여 제시한다. 제 안된 알고리즘은 동일한 정보원으로부터 받은 멀티미디어 데이터간의 연관성을 탐색하는데 특히 효과적이며 다양한 관련 응용분야에 적용할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.