Journal of the Korean Data and Information Science Society
/
제23권4호
/
pp.717-725
/
2012
데이터 마이닝은 데이터베이스로부터 쉽게 드러나지 않는 의미 있는 정보를 생성하는 기법이다. 이 중에서 연관성 규칙은 일반적으로 발생 여부를 나타내는 자료를 이용하여 지지도, 신뢰도, 향상도 등을 수치화함으로써 항목들 간의 관련성을 나타낸다. 기존의 연관성 규칙은 발생 빈도의 크기를 고려하지 않음으로써 정보 손실에 의한 오류를 범할 수 있다. 이를 위해 본 논문에서는 발생 가능한 규칙의 수를 고려한 연관성 평가 기준들을 제안하고 예제를 통하여 기존 연구와 비교한 후, 본 논문에서 제안한 연관성 평가 기준의 유용성을 살펴보았다. 실제 데이터를 통하여 분석한 결과, 기존의 연관성 규칙 평가 기준은 관심항목 수와 트랜잭션의 수를 2배로 하여도 지지도와 신뢰도, 향상도의 값이 동일한 반면에 본 논문에서 제안한 평가 기준은 발생 가능한 규칙의 수를 고려하기 때문에 각각의 평가 기준의 값들이 트랜잭션의 수에 따라 다르다는 것을 알 수 있었다. 또한 본 논문에서 제안하는 평가 기준이 기존의 연관성 규칙 평가 기준에 비해 좀 더 정확한 정보를 제공하는 것을 알 수 있다. 특히 본 논문에서 제안한 신뢰도의 범위가 기존 연관성 평가 기준에 비해 크므로 좀 더 비교 가능한 정보를 제공하는 동시에 향상도의 비교를 용이하게 한다고 할 수 있다.
연관 규칙이 구매한 항목에 관심을 가져 구매 항목간의 규칙을 생성하는 것이라면 역 연관규칙은 구매하지 않은 항목에도 관심을 가짐으로써 더욱 효과적으로 데이터 마이닝을 하려는 시도이다. 역 연관규칙을 찾기 위한 기존의 방법들은 규칙의 일부분만 찾거나. 연관규칙을 찾는 알고리즘보다 더 복잡한 알고리즘의 사용으로 역 연관규칙을 찾는데 어려움이 있다. 이에 본 논문에서는 ITEM들 사이의 dependency를 이용하는 Boolean Analyzer를 사용하여 보다 간단한 과정으로 역 연관규칙을 생성하는 방법을 제시하고, 실험을 통하여 Boolean Analyzer로 역 연관규칙을 찾고 다른 알고리즘과 비교를 통해 보다 다양한 규칙을 찾을 수 있음을 보여준다.
본 연구에서는 시간 연관 규칙에 지수 평활법을 적용한 상품 추천 알고리즘을 제안한다. 시간 연관 규칙은 기존의 연관 규칙에 시간 개념을 적용한 연관 규칙이다. 본 연구에서는 과거 데이터 보다 최신의 데이터에 가중치를 더 부여한 지수 평활 시간 연관 규칙을 제안한다. 제안한 알고리즘은 시간 의존적인 데이터에 적용하여 시뮬레이션을 한 결과 지수 평활법을 적용한 시간 연관 규칙이 기존의 시간 연관 규칙보다 실행시간 면에서 다소 오래 걸리지만 상품 추천 측면에서 더 효과적이다.
통신 기술 발전 및 네트워크 대중화는 디지털 콘텐츠에 대한 수요, 요구 및 창조적으로 생산되는 디지털 콘텐츠 수의 증가를 야기하였다. 디지털 콘텐츠는 원 자료 수집 및 생산 시기, 그리고 방법 등에 따라 그 형태가 매우 다양하며 디지털 콘텐츠들 사이에는 많은 연관 관계가 존재한다. 그러나 디지털 콘텐츠를 표준화하기 위한 메타데이터는 많이 있지만 디지털 콘텐츠들 사이에 존재하는 연관 정보 표현은 고려하지 않는다. 본 논문은 디지털 콘텐츠의 연관 정보 표현을 위한 메타데이터를 제안한다. 제안하는 메타데이터는 디지털 콘텐츠의 국제 표준 메타 데이터인 더블린 코어와 호환가능하다. 설계할 메타데이터는 더블린 코어의 관계 요소를 확장하여 디지털 콘텐츠에 대한 다양한 직간접적인 연관 관계를 표현할 수 있다 또한 설계된 메타데이터에 기반한 디지털 콘텐츠 연관 정보 관리 시스템을 구축함으로써 더욱 유용한 정보를 제공할 수 있음을 보인다.
보안위협은 갈수록 심각해지고 다양한 정보보호시스템들을 통합하는 통합보안관리시스템에 관한 연구 개발도 활발히 진행 중이다. 이기종 정보보호시스템에서 발생하는 다량의 경보와 이벤트를 효과적으로 수집, 통합하고 상호연관 분석할 수 있는 방법이 절실하다. 현재 연구되고 있는 상호연관분석 방법들에 대해서 조사 분류하고 각 분류별로 장단점을 분석하여 이기종 통합보안관리에 적합한 상호연관분석 방법을 제안한다. 보안 경보 검증과정과 분산화된 경보처리방법으로 실시간 상호연관분석이 가능하도록 설계하였다.
효율적인 데이타마트 정보의 축척과 질의 정보 추출을 위한 연관 마이닝 방법을 적용하여 검색 속도를 빠르게 할 수 있도록 테이블을 생성하고 고객의 속성별 가중치와 선호기준을 입력받아 선호 점수를 계산하여 점수가 높은 과목을 우선적으로 검색할 수 있도록 기존 연관 알고리즘에서 사용한 단일 항목 입력 데이터 구조를 확장하여 다중 항목 연관 알고리즘(Multiple Item Association Mining : MIAM)을 이용하여 생성된 연관 검색 유형 테이블을 데이터베이스캐시화를 설계하였다. 동일한 알고리즘에서도 데이터베이스캐시 시스템을 적용한 시스템의 질의 처리 수행속도가 우수성을 이용하여 설계함으로써 효율적인 웹 서버 기능을 수행할 수 있음과 동시에 데이터베이스 캐싱의 주요 이점인 효율성 증대, 속도 향상, 비용절감의 효과를 얻을 수 있으므로 연구 설계하였다.
인터넷의 급속한 성장과 더불어 많은 정보와 데이터들을 인터넷을 통하여 얻을 수 있게 되었으며 많은 단체들이 문서들을 웹을 통하여 이용 가능하게 만들고 있다. 이에 따라 다양한 정보와 데이터를 효과적으로 분류하고 검색하는 문서 분류 (Document Classification)에 대한 알고리즘이 다양한 분야에서 널리 연구되어 왔으며 본 논문에서 초점을 두고 있는 전자 도서관 (Digital Library) 분야에서도 활발히 연구되어지고 있다. 하지만 기존의 전자 도서관의 문서 분류 알고리즘들은 문서들의 각 단락의 비중을 고려하지 않은 채 단어들의 발생 빈도에 초점을 두어 많은 잡음 단어 (Noise Term)를 포함하고 그로 인하여 분류 성능이 떨어졌다. 본 논문에서는 문서 단락의 중요도에 따라 다른 .가중치를 부여하여 단어 지지도 (Term Support)가 높은 단어들을 추출하고 그 단어들로 연관 규칙 (Association Rules)을 이용하여 분류 규칙을 생성하는 방법을 제안한다. 제안된 방법의 성능평가를 위해 문서 분류에 널리 쓰이는 나이브 베이지안 분류자 (Na$\square$ve Bayesian Classifier) 및 기존의 단순 연관 규칙 분류자 (Associative Classifier)와 비교 평가하였다. 그 결과, 각 가중치가 부여된 연관 규칙 분류 방법이 나이브 베이지안 분류 방법과 단순 연관 규칙 분류 방법보다 높은 성능을 보였다.
IPsec 프로토콜에서는 각 보안 영역에 따라 각기 다른 보안 정책을 내부적으로 정의하여 사용한다. 각 보안 정책들 간에는 상호 연관성을 가진 정책들이 존재할 수 있다. 이때 상호 연관성을 가진 정책들로 인하여 정책 요청에 의한 정책 협상과정에서 뜻하지 않은 정책정보를 적용할 수 있다. 본 논문에서는 이와 같이 각 보안 정책들간에 연관성을 가진 정책으로 인하여 발생할 수 있는 문제점을 분석하여, 이들 정책들간의 연관성을 제거함으로써 신뢰성 높은 정책정보를 제공하려고 한다.
u-Health에 대한 관심과 IT 기술의 발전에 따라 의료 정보를 적극적으로 활용하고자 하는 요구가 커지고 있으며, 이에 대해 텍스트 형태의 의료 정보 데이터에 연관규칙 기법을 적용하여 질병과 증상과의 관계를 추론하는 시스템에 대한 연구들이 이루어지고 있다. 그러나 일반적인 연관규칙 기법을 의료 정보 데이터에 그대로 적용할 경우, 이전에는 새로운 연관규칙들보다 일반적이며 의미없는 연관규칙들이 많이 생성되는 문제가 발생한다. 또한 필터링으로 인해 빈번하게 함께 발생하지는 않지만 의학적으로 의미있는 항목들의 연관 규칙을 발견할 수 없다는 한계점을 가지게 된다. 본 논문에서는 의료데이터 특성을 고려하여 빈번한 항목과 빈번하지 않지만 의학적으로 의미 있는 항목들을 대상으로 연관규칙을 구성하여 의료 전문가의 의사 결정에 도움을 주기 위한 시스템을 제안한다. 제안 시스템은 의료 기록 데이터에서 용어들을 TF-IDF기반으로 가중치를 부여하고 기존 FP-Growth 알고리즘을 확장하여 TF-IDF 가중치를 고려한 빈번하게 발생하거나 빈번하지 않지만 의미 있는 연관규칙을 구성한다. 특정 질의 데이터가 입력되면 해당 데이터에 나타난 연관 규칙들의 유사도를 의학분야 온톨로지를 이용하여 평가하여 해당 데이터의 내용과 관련된 후보 질병들을 추론한다. 추론된 후보 질병명은 의료 전문가에게 의사 결정의 참고 자료로 제공된다. 실제 임상 진료 및 처방 기록 데이터에 대해 제안 시스템을 적용해 본 결과, 본 제안 시스템을 통해 도출한 연관 규칙이 기존 FP-Growth 알고리즘을 적용했을 때 보다 더 구체적인 질병과 증상과의 관계들을 포함함을 확인할 수 있었다. 또한 본 제안 시스템은 자유형식의 의료 및 병리데이터를 마이닝하고 후보 질병들을 가중치 기반으로 보여주므로, 의료 기록 정보로부터 질병 관련 새로운 정보를 획득하고 의료진의 의사 결정에 도움을 주는 시스템으로 활용될 수 있다.
추천 시스템은 사용자의 아이템에 대한 선호도를 예측함으로써. 사용자에게 적합한 아이템을 추천한다. 이러한 추천 시스템은 희소성과 확장성의 문제를 안고 있다. 희소성이란 사용자의 선호도 예측의 토대가 되는 정보의 부족으로 인하여 추천 아이템의 범위가 제한되는 것이고, 확장성이란 사용자나 아이템의 수가 증가함에 따라 추천 시간이 증가하는 것이다. 본 논문에서는 아이템의 카테고리 정보를 이용한 다중 레벨 연관규칙을 선호도 예측에 적용하여 희소성과 확장성의 문제를 완화하고자 하였다. 연관규칙을 이용하여 선호도 예측을 위한 모델을 구축하여 확장성을 해결하고, 다중 레벨 연관규칙을 이용하여 추천 아이템의 범위를 확장할 수 있었다. 단일 레벨만을 사용한 방법과 비교한 결과, 다중 레벨을 사용한 방법이 좋은 성능을 보임을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.