• Title/Summary/Keyword: 연관정보

Search Result 3,818, Processing Time 0.031 seconds

A Study on Describing Relational Properties of Terms in Geographical Categories According to Conceptual Characteristics for Construction of Structured Glossary (구조적 학술용어사전 구축에 있어서 지역명의 개념적 특성에 따른 관계 속성 기술에 관한 연구)

  • Yim, Bolam
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2014.08a
    • /
    • pp.95-98
    • /
    • 2014
  • 본 연구는 지역명 범주에 속하는 용어들의 개념적 특성을 분석하고, 이를 토대로 다른 범주와의 관련도를 파악하여 지역명 범주 용어들을 중심으로 관계 속성들 사이의 논리적 연관성을 부여할 수 있는 모형 도출에 기반이 되는 기초 연구이다. 지역명 범주 용어 중 국가명에 한정하여 분석한 결과, 국가명 개념 속성 중심으로는 계층 구조 관계의 지역명 범주 용어들끼리 연관이 높으며, 전체 범주 용어들의 개념 속성 중심으로는 지역명 범주 용어가 지리적 위치로서의 의미로 주로 쓰이나, 행위의 주체 또는 객체의 의미나 시대의 개념으로도 많이 활용됨을 알 수 있었다. 국가명이 참조되는 개념 속성과 연관되어 활용되는 관계 속성의 경우의 일부는 참조하는 주요 개념 범주와 연관 관계를 토대로 논리적 의미 관계를 생각해볼 수 있는 것으로 나타났다.

  • PDF

A Feature Selection Method in Pseudo Sample Neural Networks (의사 샘플 신경망에서 특징 선택 기법)

  • Heo, Gyeongyong;Woo, Young Woon;Kim, Ji-Hong;Lee, Imgeun;Kim, Nam-Gyu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.01a
    • /
    • pp.197-199
    • /
    • 2013
  • 신경망의 학습은 학습 샘플의 품질뿐만이 아니라 입력으로 사용되는 특징에도 영향을 받으므로 신경망의 출력을 결정하는데 있어 연관성이 높은 특징을 입력으로 사용함으로써 학습된 신경망의 전체적인 성능을 높일 수 있다. 이 논문에서는 신경망의 입력으로 사용되는 특징과 출력의 연관성 파악하고 연관성이 낮은 특징을 학습 과정에서 배제함으로써 신경망의 전체적인 성능을 높일 수 있는 방법을 제시하였다. 토석류 데이터를 위한 의사 샘플 신경망에 제안한 방법을 적용한 경우 연관성이 낮은 특징 하나를 제외함으로써 약 6%의 오류 감소 효과를 얻을 수 있었다.

  • PDF

Association Discovery Among Protein Motifs (단백질 모티프간 연관성 탐사)

  • Lee, Hyun-Suk;Lee, Do-Heon;Choi, Deok-Jai
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11c
    • /
    • pp.1827-1830
    • /
    • 2002
  • 단백질 모티프(motif)란 유사한 기능을 가진 여러 단백질 서열에서 공통적으로 발견되는 패턴으로서 단백질의 기능을 예측하는 단서로 활용된다. 현재 Prosite, Pfam 등의 데이터베이스에서 정규식(regular expression), 가중치 행렬(weighted matrix), 은닉 마코프 모델(hidden Markov model)의 형태로 4천여종 이상의 모티프가 등록되어 있다. 본 논문에서는 연관성 탐사 기법을 적용하여 Hits 데이터로부터 상당히 높은 연관성을 갖는 모티프 집단을 밝히고, 실제 자연현상에서 자주 나타나는 연관성을 교차타당성 (cross-validation) 기법을 통해 입증하였다. 이렇게 밝혀진 단백질 모티프간 연관성을 트라이 탐색 기법을 통해 웹으로 제공함으로써 단백질의 기능유추에 쉽게 접근하고자 한다.

  • PDF

Processing Multi-Valued Attributes in Association Rules for Data Mining (데이터 마이닝을 위한 연관규칙의 다중 값 속성 처리방법)

  • 김산성;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.340-342
    • /
    • 2002
  • 다중 값이란 속성 값이 집합인 것을 말한다. 즉, 관계형 데이터베이스에서 자료 유형이 집합인 속성을 의미한다. 이러한 다중 값 속성 처리는 기존 데이터마이닝 기술 자체로는 처리한 수 없으며 후처리나 선처리 과정을 이용하여 처리하고 있다. 전처리나 후처리 과정을 통해 처리할 경우 수행과장에 있어 많은 시간이 소요되고 혹은 타당하지 않은 규칙이 생성되는 문제점을 가지고 있다. 특히 연관화 기법 특성상 분석하고자 할 항목이 증가할수록 연관성의 수가 지수(exponential)단위이기 때문에 이를 해결하는데는 상당한 어려움이 따르게 된다. 본 논문에서는 관계형 데이터베이스 테이블 구조에서 데이터 마이닝의 수행을 위한 전처리나 후처리의 과정을 고려하지 않음으로 위에서 언급된 문제점들을 해결하고자 한다. 특히 데이터 변환 작업 없이 정량적(Quantitative)연관 규칙과 연관 규칙(Market Basket Analysis)의 혼합 형태의 규칙을 생성할 수 있게끔 알고리즘을 확장하여 보다 효율적인 규칙이 생성될 수 있도록 한다. 마지막으로 Each Movie 데이터를 사용하여 확장한 알고리즘의 다중 값 속성 처리 방법의 효율성과 타탕성을 검증한다.

  • PDF

Association Rules Mining of Image Data using Spatial Factor (공간 분할 지수를 이용한 이미지 데이터 연관 규칙 마이닝)

  • Song ImYoung;Kim K.C.;Suk S.K.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.82-84
    • /
    • 2005
  • 본 논문에서는 기존의 멀티미디어 연관 규칙 알고리즘인 Max occur 알고리즘에서 추출한 빈발 항목 집합의 결과들에 대하여 빈발 항목 집합들끼리의 공간적인 연관 관계를 고려하기 위챈 공간 데이터 마이닝의 대표적인 공간 분할 방법인 그리드 셀 기반으로 곰간 분할 지수(spatial facotr)인 SF를 이용한 이미지 공간 연관 규칙 마이닝 방법을 제시한다. 또한 최소 공간 지지도를 적용하여 이미지 데이터에서 반복적으로 발생하는 항목과 항목간의 공간 관계를 통해 이미지 연관 규칙을 마이닝 하는데 보다 유효한 알고리즘을 제안한다.

  • PDF

Exploring Association Among Protein Motifs (단백질 모티프간 연관성 탐사)

  • Lee, Hyun-Suk;Lee, Do-Heon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04a
    • /
    • pp.47-50
    • /
    • 2002
  • 단백질 모티프(motif)란 유사한 기능을 가진 여러 단백질 서열에서 공통적으로 발견되는 패턴으로서 단백질의 기능을 예측하는 단서로 활용된다. 현재 Prosite, Pfam 등의 데이터베이스에서 정규식(regular expression), 가중치 행렬(weighted matrix). 은닉 마코프 모델(hidden Markov model)의 형태로 4천여종 이상의 모티프가 등록되어 있다. 하지만, 이러한 데이터베이스는 모티프와 단백질간의 일대일 관계만을 저장하고 있기 때문에, 모티프 간의 연관성을 파악하기는 어렵다. 본 논문에서는 모티프 간의 연관 관계를 연관 규칙의 형태로 발견하는 데이터 마이닝 기법을 제시한다. 아울러 HITS 데이터베이스로부터 입수한 단백질-모티프 데이터베이스에 본 기법을 적용함으로써 상당히 높은 연관성을 갖는 모티프 집단이 실제로 존재한다는 것을 밝힌다.

  • PDF

Association Rules Mining on Image Data with Recurrent Items and Significant Rare Items (빈발 항목과 의미있는 희소 항목을 포함한 이미지 데이터 연관 규칙 마이닝)

  • Song, Im-Young;Suk, Sang-Kee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11c
    • /
    • pp.1359-1362
    • /
    • 2003
  • 최근 인터넷과 웹 기술의 발전 그리고 이를 기반으로 하는 다양한 멀티미디어 컨텐츠가 홍수를 이루고 있지만 멀티미디어 데이터에서 체계적으로 연관 규칙을 마이닝 하는 연구는 초기 단계이다. 본 논문에서는 이미지 프로세싱 분야 및 내용 기반 이미지 검색에 대한 기존 연구를 바탕으로 이미지 데이터 저장소에 저장된 재생성 항목과 희소하게 발생하지만 상대적으로 특정 항목과 높은 비율로 동시에 나타나는 희소 항목을 포함한 내용기반의 이미지 연관 규칙을 찾아내기 위한 탐사 기법을 제안한다 실험 결과 제안된 알고리즘은 기존의 재생성 항목만을 고려한 알고리즘보다 희소 항목을 포함하여 연관 규칙을 탐사하므로 같은 종류의 이미지가 모여 있는 저장소에서 이미지 오브젝트간의 연관 관계를 발견하는 이미지 데이터 마이닝에 효과적이다.

  • PDF

A Related Keyword Group Extraction Method for Keyword Marketing (키워드 마케팅을 위한 연관 키워드 추출 기법)

  • 이성진;이수원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.124-126
    • /
    • 2004
  • 인터넷 광고 시장의 급속한 성장과 함께 보다 효율적인 광고기법을 개발하기 위한 노력들이 이루어지고 있는 가운데 최근 들어 검색엔진의 특성을 이용한 키워드 광고가 주목을 받고 있다. 키워드 광고란 사용자가 입력한 검색어와 유사한 범주에 속하는 사이트의 광고를 검색 결과 페이지 상단에 보여주는 것을 말한다. 그러나, 키워드 광고는 키워드를 판매할 수 있는 위치가 한정적이기 때문에 판매 가능성이 있는 키워드에 대한 관리 및 판매 전략이 요구된다. 본 논문에서는 판매 가능성이 있는 키워드에 대한 관리 전략 수립을 위하여 연관 키워드 그룹을 자동으로 추출하는 기법을 제안한다. 연관 키워드 그룹의 생성은 사용자가 입력한 검색어에 의해 노출되는 사이트들을 묶어 그룹으로 형성하고 사이트 그룹의 중요 키워드를 추출한 다음 키워드간의 연관성을 판단하는 과정으로 이루어진다. 본 논문에서는 연관 키워드 그룹 추출의 각 단계를 구체적으로 설명하고 실험 결과를 분석한다. 마지막으로 연구의 결론과 향후 연구 과제에 대하여 기술한다.

  • PDF

Classification of Web Documents Using Associative Word Frequency for Collaborative Filtering (협력적 필터링을 위해 연관 단어 빈도를 이용한 웹 문서 분류)

  • 하원식;정경용;정헌만;류중경;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.160-162
    • /
    • 2004
  • 기존의 웹 문서 분류 시스템서는 많은 시간과 노력을 요구하며, 연관 단어가 아닌 단일 단어만으로 웹 문서들을 분류하여 단어의 중의성을 반영하지 못해 많은 오분류가 있었다. 이러한 문제점을 해결하기 위해 본 논문에서는 협력적 필터링을 위한 연관 단어 빈도를 사용한 웹 문서 분류 방법을 제안한다. 제안된 방법에서는 웹 문서 내에서 단어들을 추출하고 빈도 가중치를 계산한다. 추출된 단어를 Apriori 알고리즘에 의해 연관 규칙을 생성하고 신뢰도에 단어 빈도 가중치를 반영한다. 수정된 신뢰도를 ARHP 알고리즘에 적용하여 연관 단어들 사이의 유사정도를 계산하고 유사 클래스를 구성한다 생성된 유사 클래스들을 기반으로 웹 문서를 $\alpha$-cut을 이용하여 분류한다 성능평가를 위해 기존의 문서 분류 방법들과 비교 평가를 하였다.

  • PDF

A Measure for Improvement in Quality of Association Rules in the Item Response Dataset (문항 응답 데이터에서 문항간 연관규칙의 질적 향상을 위한 도구 개발)

  • Kwak, Eun-Young;Kim, Hyeoncheol
    • The Journal of Korean Association of Computer Education
    • /
    • v.10 no.3
    • /
    • pp.1-8
    • /
    • 2007
  • In this paper, we introduce a new measure called surprisal that estimates the informativeness of transactional instances and attributes in the item response dataset and improve the quality of association rules. In order to this, we set artificial dataset and eliminate noisy and uninformative data using the surprisal first, and then generate association rules between items. And we compare the association rules from the dataset after surprisal-based pruning with support-based pruning and original dataset unpruned. Experimental result that the surprisal-based pruning improves quality of association rules in question item response datasets significantly.

  • PDF