• Title/Summary/Keyword: 연관마이닝

Search Result 489, Processing Time 0.027 seconds

Application of Data Mining Technique in Characterizing the Scholastic Aptitude of the Students (데이터 마이닝 기법을 이용한 학습 능력 분석 시스템 개발)

  • 김범은;김덕희;원유집
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.144-146
    • /
    • 1999
  • 데이터 마이닝은 대량의 데이터로부터 데이터 내에 존재하는 관계, 패턴, 규칙 등을 찾아내고 모형화 함으로서 유용한 지식을 추출하는 방법이다. 데이터 마이닝을 이용한 이 시스템은 데이터를 비슷한 특성을 가지는 집단으로 분류하여 집단의 특성을 찾아내고 데이터 항목간의 연관성을 유출해 내어 학생들의 적절한 학습지도 영역을 찾아내는데 목적이 있다. 본 논문에서는 개발한 시스템에서 수학 학습 능력에 대한 특성을 도출해 내는 방법을 알아보고, 어떻게 기존의 학원의 역할을 대신할 수 있는지 검증한다.

  • PDF

Creation of Frequent Patterns using K-means Algorithm for Data Mining Preprocess (데이터 마이닝의 전처리를 위한 K-means 알고리즘을 이용한 빈발패턴 생성)

  • Heui-Jong Yoo;Chi-Yeon Park
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.336-339
    • /
    • 2008
  • 우리가 사용하는 데이터베이스 내에는 많은 양의 데이터 들이 들어 있으며, 계속적으로 그 양은 늘어나고 있다. 이러한 데이터들로부터 질의를 통해 얻을 수 있는 기본적이고 단순한 정보들과 달리 고급 정보를 얻게 해주는 방법이 데이터 마이닝이다. 데이터 마이닝의 기법 중에서 본 논문에서는 k-means 알고리즘을 사용하여 트랜잭션을 클러스터링 함으로써 데이터베이스의 트랜잭션 수를 줄여 연관규칙의 대표적인 알고리즘인 Apriori 알고리즘의 단점인 트랜잭션 스캔으로 인한 성능 저하를 개선하고자 한다.

Context Ontology and Trigger Rule Design for Service Pattern Mining (서비스 패턴 마이닝을 위한 컨텍스트 온톨로지 및 트리거 규칙 설계)

  • Hwang, Jeong-Hee
    • Journal of Digital Contents Society
    • /
    • v.13 no.3
    • /
    • pp.291-299
    • /
    • 2012
  • Ubiquitous computing is a technique to provide users with appropriate services, collecting the context information in somewhere by attached sensor. An intelligent system needs to automatically update services according to the user's various circumstances. To do this, in this paper, we propose a design of context ontology, trigger rule for mining service pattern related to users activity and an active mining architecture integrating trigger system. The proposed system is a framework for active mining user activity and service pattern by considering the relation between user context and object based on trigger system.

An associative service mining based on dynamic weight (동적 가중치 기반의 연관 서비스 탐사 기법)

  • Hwang, Jeong Hee
    • Journal of Digital Contents Society
    • /
    • v.17 no.5
    • /
    • pp.359-366
    • /
    • 2016
  • In order to provide useful services for user in ubiquitous environment, a technique that can get the helpful information considering user activity and preference is needed and also user's interest actually changes as time passes. Therefore, the discovering method which reflects the concern degree of service information is needed. In this paper, we present the finding method of frequent pattern with dynamic weight on individual item based on service ontology we design. Our method can be applied to provide interested service information for user depending on context.

Algorithm for Extraction of Large itemsets (빈발 항목집합 추출을 위한 알고리즘)

  • Chai, Duck-Jin;Hwang, Bu-Hyun
    • Annual Conference of KIPS
    • /
    • 2000.10a
    • /
    • pp.117-120
    • /
    • 2000
  • 데이터 마이닝이란 대량의 실제 데이터로부터, 이전에 잘 알려지지는 않았지만, 잠재적으로 유용한 정보를 추출하는 작업이라 정의한다. 데이터 마이닝 기술 중에서 현재 가장 활발하게 연구되고 있는 것들 중의 하나가 연관 규칙 탐사이다. 연관 규칙이란 어떤 사건이 일어나면 다른 사건이 일어나는 관련성을 의미한다. 기존의 연관 규칙을 발견하기 위한 알고리즘들은 k-빈발 항목집합을 추출하기 위하여 k-후보 항목집합의 개수를 줄이거나 데이터베이스의 크기를 줄이는데 많은 연구가 이루어져 오고 있다. 본 논문에서는 상대적으로 많은 후보 항목집합의 데이터베이스 스캔을 통하여 추출되는 2-빈발 항목집합은 해쉬 기법을 사용하여 추출하고 k(k>2)-빈발 항목집합은 데이터베이스를 전처리하여 트랜잭션의 길이에 따라 두 개의 트랜잭션 집합으로 분리하고 분리된 데이터베이스에 다른 알고리즘을 사용하여 빈발 항목집합을 찾는 알고리즘을 제안한다. 그리고 성능 평가를 통하여 제안하는 방법의 성능 및 타당성을 보인다.

  • PDF

Creation of Frequent Patterns using Clustering in Large Database (대용량 데이터베이스에서 클러스터링을 이용한 빈발 패턴 생성)

  • Kim, Eui-Chan;Hwang, Byung-Yeon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.100-102
    • /
    • 2005
  • 데이터베이스에 저장되어 있는 데이터들을 통해서 의미있는 정보를 찾는 것이 데이터 마이닝이다. 많은 데이터 마이닝 기법들 중에 연관규칙을 다루는 연구가 많이 이루어지고 있다. 연관규칙 기법도 다양하게 연구되고 있는데 그 중 빈발 패턴 트리(FP-Tree)라는 방법을 이용하여 빈발 패턴을 찾아내는 연구가 활발히 진행되고 있다. 빈발 패턴 트리는 기존에 잘 알려져있는 연관규칙 생성 기법인 Apriori 기법보다 우수한 성능을 가지는 방법이다. 그러나 빈발 패턴 트리도 몇가지 문제점을 가지고 있다. 본 논문에서는 빈발 패턴 트리의 문제점 중 하나인 과도한 FP-Tree 생성을 줄이려 한다. 조건부 패턴 베이스를 통해 얻어지는 조건부 FP-Tree의 생성을 줄여 기존의 FP-Tree보다 더 나은 성능을 얻기 위해서 적절한 클리스터링을 이용하려 한다. 클러스터링 기법은 비트 트랜잭션을 이용한 클러스터링 방법을 이용한다.

  • PDF

A Bottom-Up Approach for Mining Multiple-Level Association Rules Using Fuzzy Concert Hierarchies (퍼지 개념 계층을 이용한 다중 수준 연관 규칙 마이닝의 상향식 접근)

  • Sohn, Bong-Ki;Han, Sang-Hun;Lee, Keon-Myung
    • Annual Conference of KIPS
    • /
    • 2000.10b
    • /
    • pp.1445-1448
    • /
    • 2000
  • 이 논문에서는 개념간의 애매한 관계를 적절히 표현할 수 있는 퍼지 개념 계층을 참조하여 최하위 개념 수준에서부터 최상위 개념 수준까지 각 수준에서 연관 규칙을 추출하는 다중 수준 상향식 연관규칙 마이닝 방법을 제안한다. 상위 개념 수준에서 빈발 항목 집합을 구하는데 필요한 상위 개념 수준의 트랜잭션 데이터베이스를 생성하는 방법을 소개한다. 또한 제안한 방법의 응용성을 보이기 위해 실험 과정과 결과를 보인다.

  • PDF

Mining Association Rules on Significant Rare Data using Relative Support (상대 지지도를 이용한 의미 있는 희소 항목에 대한 연관 규칙 탐사 기법)

  • Ha, Dan-Shim;Hwang, Bu-Hyun
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.577-586
    • /
    • 2001
  • Recently data mining, which is analyzing the stored data and discovering potential knowledge and information in large database is a key research topic in database research data In this paper, we study methods of discovering association rules which are one of data mining techniques. And we propose a technique of discovering association rules using the relative support to consider significant rare data which have the high relative support among some data. And we compare and evaluate existing methods and the proposed method of discovering association rules for discovering significant rare data.

  • PDF

Development of chatting program using social issue keyword information (사회적 핵심 이슈 키워드 정보를 활용한 채팅 프로그램 개발)

  • Yoon, Kyung-Suob;Jeong, Won-Hyeok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.307-310
    • /
    • 2020
  • 본 논문에서 이슈 키워드 추출을 위해 텍스트 마이닝(Text Mining) 기술을 요구한다. 사회적 이슈 키워드를 추출하기 위해 키워드 수집 모델이 되는 사이트에서 크롤링(crawling)을 수행한 뒤, 형태소 단위 의미있는 단어를 수집하기 위해 형태소 분석(morphological analysis)을 수행한다. 한국어 형태소 분석을 위해 파이썬의 코엔엘파이(KoNLPy) 패키지를 활용한다. 형태소 분석을 통해 나뉘어진 단어에서 통계를 내어 이슈 키워드 추출한다. 이슈 키워드를 뒷받침할 연관 단어를 분석하기 위해 단어 임베딩(Word Embedding)을 수행한다. 단어 임베딩 수행을 위해 Word2Vec 모델 중 Skip-Gram 방법론을 적용하여 연관 단어를 분석하도록 개발하였다. 웹 소켓(Web Socket) 통신을 통한 채팅 프로그램의 상단에 분석한 이슈 키워드와 연관 단어를 출력하도록 개발하였다.

  • PDF

Optimal Associative Neighborhood Mining using Representative Attribute (대표 속성을 이용한 최적 연관 이웃 마이닝)

  • Jung Kyung-Yong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.4 s.310
    • /
    • pp.50-57
    • /
    • 2006
  • In Electronic Commerce, the latest most of the personalized recommender systems have applied to the collaborative filtering technique. This method calculates the weight of similarity among users who have a similar preference degree in order to predict and recommend the item which hits to propensity of users. In this case, we commonly use Pearson Correlation Coefficient. However, this method is feasible to calculate a correlation if only there are the items that two users evaluated a preference degree in common. Accordingly, the accuracy of prediction falls. The weight of similarity can affect not only the case which predicts the item which hits to propensity of users, but also the performance of the personalized recommender system. In this study, we verify the improvement of the prediction accuracy through an experiment after observing the rule of the weight of similarity applying Vector similarity, Entropy, Inverse user frequency, and Default voting of Information Retrieval field. The result shows that the method combining the weight of similarity using the Entropy with Default voting got the most efficient performance.