• Title/Summary/Keyword: 연결 인식 알고리즘

Search Result 212, Processing Time 0.025 seconds

An Enhanced Counterpropagation Algorithm for Effective Pattern Recognition (효과적인 패턴 인식을 위한 개선된 Counterpropagation 알고리즘)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1682-1688
    • /
    • 2008
  • The Counterpropagation algorithm(CP) is a combination of Kohonen competition network as a hidden layer and the outstar structure of Grossberg as an output layer. CP has been used in many real applications for pattern matching, classification, data compression and statistical analysis since its learning speed is faster than other network models. However, due to the Kohonen layer's winner-takes-all strategy, it often causes instable learning and/or incorrect pattern classification when patterns are relatively diverse. Also, it is often criticized by the sensitivity of performance on the learning rate. In this paper, we propose an enhanced CP that has multiple Kohonen layers and dynamic controlling facility of learning rate using the frequency of winner neurons and the difference between input vector and the representative of winner neurons for stable learning and momentum learning for controlling weights of output links. A real world application experiment - pattern recognition from passport information - is designed for the performance evaluation of this enhanced CP and it shows that our proposed algorithm improves the conventional CP in learning and recognition performance.

Efficient Forwarding Path Computing Method for Context-Awareness Mobility Prediction Model (상황인식 이동성 예측 모델에서의 효율적인 포워딩 경로 산출 기법)

  • Jeong, Rae-jin;Oh, Young-jun;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.93-95
    • /
    • 2014
  • In this paper, we proposed efficient forwarding path computing method using Context-Awareness Mobility Prediction Model. Context-Awareness Mobility Prediction Model is storing and classifying node's previous velocity and direction according to time in the hierarchical cluster structure. To overcome environment which node-to-node connection is broken off easily, the proposed algorithm calculate the connectivity formed matrix structure by comparing predicted velocity and direction, and use masking operation for selecting relay moving to destination. The proposed algorithm identified to show short delay by utilizing forwarding path which is continue node-to-node connection in the unstable situation.

  • PDF

Context-aware Connectivity Analysis Method using Context Data Prediction Model in Delay Tolerant Networks (Delay Tolerant Networks에서 속성정보 예측 모델을 이용한 상황인식 연결성 분석 기법)

  • Jeong, Rae-Jin;Oh, Young-Jun;Lee, Kang-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.1009-1016
    • /
    • 2015
  • In this paper, we propose EPCM(Efficient Prediction-based Context-awareness Matrix) algorithm analyzing connectivity by predicting cluster's context data such as velocity and direction. In the existing DTN, unrestricted relay node selection causes an increase of delay and packet loss. The overhead is occurred by limited storage and capability. Therefore, we propose the EPCM algorithm analyzing predicted context data using context matrix and adaptive revision weight, and selecting relay node by considering connectivity between cluster and base station. The proposed algorithm saves context data to the context matrix and analyzes context according to variation and predicts context data after revision from adaptive revision weight. From the simulation results, the EPCM algorithm provides the high packet delivery ratio by selecting relay node according to predicted context data matrix.

An Efficient Prediction DTN Routing Based on Context-Awareness Matrix (DTN에서의 효율적인 예측기반 상황인식 매트릭스 라우팅)

  • Jeong, Rae-jin;Oh, Young-jun;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.524-525
    • /
    • 2013
  • 동적 움직임을 가지는 노드에 대한 DTN(Delay/Disruption Tolerant Network)은 노드의 연결단절 및 불규칙적인 노드의 움직임에 의한 불안정한 상태를 해결하는 방법 중 하나이다. 특히 DTN은 재난상황 또는 움직임이 많은 노드간의 상관관계를 분석하여 노드 간 연결 확립을 보장함으로써 데이터 연결성과 전송률을 개선한다. 본 논문은 노드의 움직임에 대한 속성 정보를 기반하여 구성된 클러스터 구조의 네트워크에서 헤드노드 간의 연결 가능성을 분석하며 데이터를 목적지까지 포워딩하는 방식으로 망을 제어 유지하기 위한 방법으로 EPCM(Efficient Prediction-based Context-Awareness Matrix) 알고리즘을 제안하고자 한다. 이를 위해 적용한 상황 매트릭스는 시간에 따른 헤드노드들의 움직임과 속도 등의 상황 예측이 가능한 정보를 포함한 포워딩 분석 요소를 제공한다. EPCM 알고리즘은 노드가 주기적인 이동성을 가진다는 가정 하에 포워딩에 요구되는 상관관계를 연산 분석하여 예측 경로를 제공한다. 노드의 이동에 의해 경로가 변화하는 환경에서 EPCM 알고리즘은 상황 매트릭스를 통해 헤드노드의 연결 정보를 저장하고 관리함으로써 연결성을 보장하고 짧은 지연시간에 효율적인 전송이 가능할 것이다.

  • PDF

A Fingerprint Identification System using Large Database (대용량 DB를 사용한 지문인식 시스템)

  • Cha, Jeong-Hee;Seo, Jeong-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.203-211
    • /
    • 2005
  • In this paper, we propose a new automatic fingerprint identification system that identifies individuals in large databases. The algorithm consists of three steps; preprocessing, classification, and matching, in the classification. we present a new classification technique based on the statistical approach for directional image distribution. In matching, we also describe improved minutiae candidate pair extraction algorithm that is faster and more accurate than existing algorithm. In matching stage, we extract fingerprint minutiaes from its thinned image for accuracy, and introduce matching process using minutiae linking information. Introduction of linking information into the minutiae matching process is a simple but accurate way, which solves the problem of reference minutiae pair selection in comparison stage of two fingerprints quickly. This algorithm is invariant to translation and rotation of fingerprint. The proposed system was tested on 1000 fingerprint images from the semiconductor chip style scanner. Experimental results reveal false acceptance rate is decreased and genuine acceptance rate is increased than existing method.

  • PDF

Korean Phonological Viseme for Lip Synch Based on Phoneme Recognition (음소인식 기반의 립싱크 구현을 위한 한국어 음운학적 Viseme의 제안)

  • Joo Heeyeol;Kang Sunmee;Ko Hanseok
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.70-73
    • /
    • 1999
  • 본 논문에서는 한국어에 대한 실시간 음소 인식을 통한 Lip Synch 구현에 필수요소인 Viseme(Visual Phoneme)을 한국어의 음운학적 접근 방법을 통해 제시하고, Lip Synch에서 입술의 모양에 결정적인 영향을 미치는 모음에 대한 모음 인식 실험 및 결과 분석을 한다.모음인식 실험에서는 한국어 음소 51개 각각에 대해 3개의 State로 이루어진 CHMM (Continilous Hidden Makov Model)으로 모델링하고, 각각의 음소가 병렬로 연결되어진 음소네트워크를 사용한다. 입력된 음성은 12차 MFCC로 특징을 추출하고, Viterbi 알고리즘을 인식 알고리즘으로 사용했으며, 인식과정에서 Bigrim 문법과 유사한 구조의 음소배열 규칙을 사용해서 인식률과 인식 속도를 향상시켰다.

  • PDF

Input Pattern Vector Extraction and Pattern Recognition of Taste using fMRI (fMRI를 이용한 맛의 입력패턴벡터 추출 및 패턴인식)

  • Lee, Sun-Yeob;Lee, Yong-Gu;Kim, Dong-Ki
    • Journal of radiological science and technology
    • /
    • v.30 no.4
    • /
    • pp.419-426
    • /
    • 2007
  • In this paper, the input pattern vectors are extracted and the learning algorithms is designed to recognize taste(bitter, sweet, sour and salty) pattern vectors. The signal intensity of taste are used to compose the input pattern vectors. The SOM(Self Organizing Maps) algorithm for taste pattern recognition is used to learn initial reference vectors and the ot-star learning algorithm is used to determine the class of the output neurons of the sunclass layer. The weights of the proposed algorithm which is between the input layer and the subclass layer can be learned to determine initial reference vectors by using SOM algorithm and to learn reference vectors by using LVQ(Learning Vector Quantization) algorithm. The pattern vectors are classified into subclasses by neurons in the subclass layer, and the weights between subclass layer and output layer are learned to classify the classified subclass, which is enclosed a class. To classify the pattern vectors, the proposed algorithm is simulated with ones of the conventional LVQ, and it is confirmed that the proposed learning method is more successful classification than the conventional LVQ.

  • PDF

Input Pattern Vector Extraction and Pattern Recognition of EEG (뇌파의 입력패턴벡터 추출 및 패턴인식)

  • Lee, Yong-Gu;Lee, Sun-Yeob;Choi, Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.95-103
    • /
    • 2006
  • In this paper, the input pattern vectors are extracted and the learning algorithms is designed to recognize EEG pattern vectors. The frequency and amplitude of alpha rhythms and beta rhythms are used to compose the input pattern vectors. And the algorithm for EEG pattern recognition is used SOM to learn initial reference vectors and out-star learning algorithm to determine the class of the output neurons of the subclass layer. The weights of the proposed algorithm which is between the input layer and the subclass layer can be learned to determine initial reference vectors by using SOM algorithm and to learn reference vectors by using LVQ algorithm, and pattern vectors is classified into subclasses by neurons which is being in the subclass layer, and the weights between subclass layer and output layer is learned to classify the classified subclass, which is enclosed a class. To classify the pattern vectors of EEG, the proposed algorithm is simulated with ones of the conventional LVQ, and it was a confirmation that the proposed learning method is more successful classification than the conventional LVQ.

  • PDF

A Vehicle License Plate Recognition Using the Feature Vectors based on Mesh and Thinning (메쉬 및 세선화 기반 특징 벡터를 이용한 차량 번호판 인식)

  • Park, Seung-Hyun;Cho, Seong-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.705-711
    • /
    • 2011
  • This paper proposes an effective algorithm of license plate recognition for industrial applications. By applying Canny edge detection on a vehicle image, it is possible to find a connected rectangular, which is a strong candidate for license plate. The color information of license plate separates plates into white and green. Then, OTSU binary image processing and foreground neighbor pixel propagation algorithm CLNF will be applied to each license plates to reduce noise except numbers and letters. Finally, through labeling, numbers and letters will be extracted from the license plate. Letter and number regions, separated from the plate, pass through mesh method and thinning process for extracting feature vectors by X-Y projection method. The extracted feature vectors are compared with the pre-learned weighting values by backpropagation neural network to execute final recognition process. The experiment results show that the proposed license plate recognition algorithm works effectively.

개선된 퍼지 ART 기반 RBF 네트워크와 PCA 알고리즘을 이용한 여권 인식 및 얼굴 인증

  • Jang, Do-Won;Kim, Kwang-Baek
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.547-556
    • /
    • 2005
  • 본 논문에서는 출입국자 관리의 효율성과 제계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하고 위조 여권을 판별할 수 있는 여권 인식 및 얼굴 인증 방법을 제안한다. 여권 이미지가 기울어진 상태로 스캔되어 획득되어질 경우 개별 코드 인식과 얼굴 인증에 많은 영향을 미칠 수도 있으므로 기울기 보정은 문자 분할 및 인식, 얼굴 인증에 있어 매우 중요하다. 따라서 본 논문에서는 여권 영상을 스미어링한 후, 추출된 문자열 중에서 가장 긴 문자열을 선택하고 이 문자열의 좌측과 우측 부분의 두께 중심을 연결하는 직선과 수평선과의 기울기를 이용하여 여권 영상에 대한 각도 보정을 수행한다. 여권 모드 추출은 소벨 연산자와 수평 스미어링, 8 방향 윤곽선 추적 알고리즘을 적용하여 여권 코드의 문자열 영역을 추출하고, 추출된 여권 코드 문자열 영역에 대해 반복 이지화 방법을 적용하여 코드의 문자열 영역을 이진화한다. 이진화된 문자열 영역에 대해 CDM 마스크를 적용하여 문자열의 코드들을 복원하고 8 방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한다. 추출된 개별 코드 인식은 개선된 RBF 네트워크를 제안하여 적용한다. 제안된 RBF 네트워크는 퍼지 논리 접속 연산자를 이용하여 경계변수를 통적으로 조정하는 개선된 퍼지 ART 알고리즘을 제안하여 RBF 네트워크의 중간층으로 적용한다. 얼굴 인증을 위해서는 얼굴 인증에 가장 보편적으로 사용되는 PCA 알고리즘을 적용한다. PCA 알고리즘은 고차원의 벡터를 저 차원의 벡터로 감량하여 전체 입력 영상들의 직교적인 공분산행렬을 계산한 후 그것의 고유 값에 따라 각 영상의 고유벡터를 구하므로 PCA 알고리즘을 적용하여 얼굴의 고유 벡터를 구한 후 특징 벡터를 추출한다. 따라서 여권 영상에서 획득되어진 얼굴 영상의 특징벡터와 데이터베이스에 있는 얼굴 영상의 특징벡터와의 거리 값을 계산하여 사진 위조 여부를 판별한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능을 평가를 위하여 원본 여권에서 얼굴 부분을 위조한 여권과 기울어진 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권의 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.

  • PDF