Journal of the Korea Institute of Information and Communication Engineering
/
v.12
no.9
/
pp.1682-1688
/
2008
The Counterpropagation algorithm(CP) is a combination of Kohonen competition network as a hidden layer and the outstar structure of Grossberg as an output layer. CP has been used in many real applications for pattern matching, classification, data compression and statistical analysis since its learning speed is faster than other network models. However, due to the Kohonen layer's winner-takes-all strategy, it often causes instable learning and/or incorrect pattern classification when patterns are relatively diverse. Also, it is often criticized by the sensitivity of performance on the learning rate. In this paper, we propose an enhanced CP that has multiple Kohonen layers and dynamic controlling facility of learning rate using the frequency of winner neurons and the difference between input vector and the representative of winner neurons for stable learning and momentum learning for controlling weights of output links. A real world application experiment - pattern recognition from passport information - is designed for the performance evaluation of this enhanced CP and it shows that our proposed algorithm improves the conventional CP in learning and recognition performance.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.10a
/
pp.93-95
/
2014
In this paper, we proposed efficient forwarding path computing method using Context-Awareness Mobility Prediction Model. Context-Awareness Mobility Prediction Model is storing and classifying node's previous velocity and direction according to time in the hierarchical cluster structure. To overcome environment which node-to-node connection is broken off easily, the proposed algorithm calculate the connectivity formed matrix structure by comparing predicted velocity and direction, and use masking operation for selecting relay moving to destination. The proposed algorithm identified to show short delay by utilizing forwarding path which is continue node-to-node connection in the unstable situation.
Journal of the Korea Institute of Information and Communication Engineering
/
v.19
no.4
/
pp.1009-1016
/
2015
In this paper, we propose EPCM(Efficient Prediction-based Context-awareness Matrix) algorithm analyzing connectivity by predicting cluster's context data such as velocity and direction. In the existing DTN, unrestricted relay node selection causes an increase of delay and packet loss. The overhead is occurred by limited storage and capability. Therefore, we propose the EPCM algorithm analyzing predicted context data using context matrix and adaptive revision weight, and selecting relay node by considering connectivity between cluster and base station. The proposed algorithm saves context data to the context matrix and analyzes context according to variation and predicts context data after revision from adaptive revision weight. From the simulation results, the EPCM algorithm provides the high packet delivery ratio by selecting relay node according to predicted context data matrix.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2013.10a
/
pp.524-525
/
2013
동적 움직임을 가지는 노드에 대한 DTN(Delay/Disruption Tolerant Network)은 노드의 연결단절 및 불규칙적인 노드의 움직임에 의한 불안정한 상태를 해결하는 방법 중 하나이다. 특히 DTN은 재난상황 또는 움직임이 많은 노드간의 상관관계를 분석하여 노드 간 연결 확립을 보장함으로써 데이터 연결성과 전송률을 개선한다. 본 논문은 노드의 움직임에 대한 속성 정보를 기반하여 구성된 클러스터 구조의 네트워크에서 헤드노드 간의 연결 가능성을 분석하며 데이터를 목적지까지 포워딩하는 방식으로 망을 제어 유지하기 위한 방법으로 EPCM(Efficient Prediction-based Context-Awareness Matrix) 알고리즘을 제안하고자 한다. 이를 위해 적용한 상황 매트릭스는 시간에 따른 헤드노드들의 움직임과 속도 등의 상황 예측이 가능한 정보를 포함한 포워딩 분석 요소를 제공한다. EPCM 알고리즘은 노드가 주기적인 이동성을 가진다는 가정 하에 포워딩에 요구되는 상관관계를 연산 분석하여 예측 경로를 제공한다. 노드의 이동에 의해 경로가 변화하는 환경에서 EPCM 알고리즘은 상황 매트릭스를 통해 헤드노드의 연결 정보를 저장하고 관리함으로써 연결성을 보장하고 짧은 지연시간에 효율적인 전송이 가능할 것이다.
Journal of the Korea Society of Computer and Information
/
v.10
no.4
s.36
/
pp.203-211
/
2005
In this paper, we propose a new automatic fingerprint identification system that identifies individuals in large databases. The algorithm consists of three steps; preprocessing, classification, and matching, in the classification. we present a new classification technique based on the statistical approach for directional image distribution. In matching, we also describe improved minutiae candidate pair extraction algorithm that is faster and more accurate than existing algorithm. In matching stage, we extract fingerprint minutiaes from its thinned image for accuracy, and introduce matching process using minutiae linking information. Introduction of linking information into the minutiae matching process is a simple but accurate way, which solves the problem of reference minutiae pair selection in comparison stage of two fingerprints quickly. This algorithm is invariant to translation and rotation of fingerprint. The proposed system was tested on 1000 fingerprint images from the semiconductor chip style scanner. Experimental results reveal false acceptance rate is decreased and genuine acceptance rate is increased than existing method.
Proceedings of the Acoustical Society of Korea Conference
/
spring
/
pp.70-73
/
1999
본 논문에서는 한국어에 대한 실시간 음소 인식을 통한 Lip Synch 구현에 필수요소인 Viseme(Visual Phoneme)을 한국어의 음운학적 접근 방법을 통해 제시하고, Lip Synch에서 입술의 모양에 결정적인 영향을 미치는 모음에 대한 모음 인식 실험 및 결과 분석을 한다.모음인식 실험에서는 한국어 음소 51개 각각에 대해 3개의 State로 이루어진 CHMM (Continilous Hidden Makov Model)으로 모델링하고, 각각의 음소가 병렬로 연결되어진 음소네트워크를 사용한다. 입력된 음성은 12차 MFCC로 특징을 추출하고, Viterbi 알고리즘을 인식 알고리즘으로 사용했으며, 인식과정에서 Bigrim 문법과 유사한 구조의 음소배열 규칙을 사용해서 인식률과 인식 속도를 향상시켰다.
In this paper, the input pattern vectors are extracted and the learning algorithms is designed to recognize taste(bitter, sweet, sour and salty) pattern vectors. The signal intensity of taste are used to compose the input pattern vectors. The SOM(Self Organizing Maps) algorithm for taste pattern recognition is used to learn initial reference vectors and the ot-star learning algorithm is used to determine the class of the output neurons of the sunclass layer. The weights of the proposed algorithm which is between the input layer and the subclass layer can be learned to determine initial reference vectors by using SOM algorithm and to learn reference vectors by using LVQ(Learning Vector Quantization) algorithm. The pattern vectors are classified into subclasses by neurons in the subclass layer, and the weights between subclass layer and output layer are learned to classify the classified subclass, which is enclosed a class. To classify the pattern vectors, the proposed algorithm is simulated with ones of the conventional LVQ, and it is confirmed that the proposed learning method is more successful classification than the conventional LVQ.
Journal of the Korea Society of Computer and Information
/
v.11
no.5
s.43
/
pp.95-103
/
2006
In this paper, the input pattern vectors are extracted and the learning algorithms is designed to recognize EEG pattern vectors. The frequency and amplitude of alpha rhythms and beta rhythms are used to compose the input pattern vectors. And the algorithm for EEG pattern recognition is used SOM to learn initial reference vectors and out-star learning algorithm to determine the class of the output neurons of the subclass layer. The weights of the proposed algorithm which is between the input layer and the subclass layer can be learned to determine initial reference vectors by using SOM algorithm and to learn reference vectors by using LVQ algorithm, and pattern vectors is classified into subclasses by neurons which is being in the subclass layer, and the weights between subclass layer and output layer is learned to classify the classified subclass, which is enclosed a class. To classify the pattern vectors of EEG, the proposed algorithm is simulated with ones of the conventional LVQ, and it was a confirmation that the proposed learning method is more successful classification than the conventional LVQ.
Journal of the Korean Institute of Intelligent Systems
/
v.21
no.6
/
pp.705-711
/
2011
This paper proposes an effective algorithm of license plate recognition for industrial applications. By applying Canny edge detection on a vehicle image, it is possible to find a connected rectangular, which is a strong candidate for license plate. The color information of license plate separates plates into white and green. Then, OTSU binary image processing and foreground neighbor pixel propagation algorithm CLNF will be applied to each license plates to reduce noise except numbers and letters. Finally, through labeling, numbers and letters will be extracted from the license plate. Letter and number regions, separated from the plate, pass through mesh method and thinning process for extracting feature vectors by X-Y projection method. The extracted feature vectors are compared with the pre-learned weighting values by backpropagation neural network to execute final recognition process. The experiment results show that the proposed license plate recognition algorithm works effectively.
Proceedings of the Korea Inteligent Information System Society Conference
/
2005.11a
/
pp.547-556
/
2005
본 논문에서는 출입국자 관리의 효율성과 제계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하고 위조 여권을 판별할 수 있는 여권 인식 및 얼굴 인증 방법을 제안한다. 여권 이미지가 기울어진 상태로 스캔되어 획득되어질 경우 개별 코드 인식과 얼굴 인증에 많은 영향을 미칠 수도 있으므로 기울기 보정은 문자 분할 및 인식, 얼굴 인증에 있어 매우 중요하다. 따라서 본 논문에서는 여권 영상을 스미어링한 후, 추출된 문자열 중에서 가장 긴 문자열을 선택하고 이 문자열의 좌측과 우측 부분의 두께 중심을 연결하는 직선과 수평선과의 기울기를 이용하여 여권 영상에 대한 각도 보정을 수행한다. 여권 모드 추출은 소벨 연산자와 수평 스미어링, 8 방향 윤곽선 추적 알고리즘을 적용하여 여권 코드의 문자열 영역을 추출하고, 추출된 여권 코드 문자열 영역에 대해 반복 이지화 방법을 적용하여 코드의 문자열 영역을 이진화한다. 이진화된 문자열 영역에 대해 CDM 마스크를 적용하여 문자열의 코드들을 복원하고 8 방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한다. 추출된 개별 코드 인식은 개선된 RBF 네트워크를 제안하여 적용한다. 제안된 RBF 네트워크는 퍼지 논리 접속 연산자를 이용하여 경계변수를 통적으로 조정하는 개선된 퍼지 ART 알고리즘을 제안하여 RBF 네트워크의 중간층으로 적용한다. 얼굴 인증을 위해서는 얼굴 인증에 가장 보편적으로 사용되는 PCA 알고리즘을 적용한다. PCA 알고리즘은 고차원의 벡터를 저 차원의 벡터로 감량하여 전체 입력 영상들의 직교적인 공분산행렬을 계산한 후 그것의 고유 값에 따라 각 영상의 고유벡터를 구하므로 PCA 알고리즘을 적용하여 얼굴의 고유 벡터를 구한 후 특징 벡터를 추출한다. 따라서 여권 영상에서 획득되어진 얼굴 영상의 특징벡터와 데이터베이스에 있는 얼굴 영상의 특징벡터와의 거리 값을 계산하여 사진 위조 여부를 판별한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능을 평가를 위하여 원본 여권에서 얼굴 부분을 위조한 여권과 기울어진 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권의 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.