• Title/Summary/Keyword: 역 전파 신경 회로망

Search Result 8, Processing Time 0.031 seconds

Feature Vector Extraction and Classification Performance Comparison According to Various Settings of Classifiers for Fault Detection and Classification of Induction Motor (유도 전동기의 고장 검출 및 분류를 위한 특징 벡터 추출과 분류기의 다양한 설정에 따른 분류 성능 비교)

  • Kang, Myeong-Su;Nguyen, Thu-Ngoc;Kim, Yong-Min;Kim, Cheol-Hong;Kim, Jong-Myon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.8
    • /
    • pp.446-460
    • /
    • 2011
  • The use of induction motors has been recently increasing with automation in aeronautical and automotive industries, and it playes a significant role. This has motivated that many researchers have studied on developing fault detection and classification systems of an induction motor in order to minimize economical damage caused by its fault. With this reason, this paper proposed feature vector extraction methods based on STE (short-time energy)+SVD (singular value decomposition) and DCT (discrete cosine transform)+SVD techniques to early detect and diagnose faults of induction motors, and classified faults of an induction motor into different types of them by using extracted features as inputs of BPNN (back propagation neural network) and multi-layer SVM (support vector machine). When BPNN and multi-lay SVM are used as classifiers for fault classification, there are many settings that affect classification performance: the number of input layers, the number of hidden layers and learning algorithms for BPNN, and standard deviation values of Gaussian radial basis function for multi-layer SVM. Therefore, this paper quantitatively simulated to find appropriate settings for those classifiers yielding higher classification performance than others.

Extraction of Human Body Using Neural Network in Intelligent Robot System (지능형 로봇 시스템에서 신경 회로망을 이용한 인간 몸의 제스처 추출)

  • So, Jea-Yun;Kim, Jong-Seon;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2081-2082
    • /
    • 2006
  • 본 논문에서는 지능형 로봇 시스템에서 신경 회로망을 이용한 인간 몸의 제스처 추출 기법을 제안 하였다. 지능형 로봇 시스템에서 사용된 컴퓨터 시각 기반에서는 시간상의 변화에 따른 특징 벡터 추출을 필요로 한다. 이를 위해 본 논문에서는 신경 회로망을 이용한 제스처 추출 기법을 제안 하였다. 신경 회로망을 이용한 제스처 추출은 오류 역 전파 학습방법을 사용하여 시간상에서 변화하는 영상 시퀀스에 정보를 생성하고 움직임 모델을 통해 두 정보간의 따른 제스처 추출에 가중치를 준다. 마지막으로 본 연구에서 제안한 기법은 실험을 통해 그 우수성을 확인하였다.

  • PDF

Highly Reliable Fault Detection and Classification Algorithm for Induction Motors (유도전동기를 위한 고 신뢰성 고장 검출 및 분류 알고리즘 연구)

  • Hwang, Chul-Hee;Kang, Myeong-Su;Jung, Yong-Bum;Kim, Jong-Myon
    • The KIPS Transactions:PartB
    • /
    • v.18B no.3
    • /
    • pp.147-156
    • /
    • 2011
  • This paper proposes a 3-stage (preprocessing, feature extraction, and classification) fault detection and classification algorithm for induction motors. In the first stage, a low-pass filter is used to remove noise components in the fault signal. In the second stage, a discrete cosine transform (DCT) and a statistical method are used to extract features of the fault signal. Finally, a back propagation neural network (BPNN) method is applied to classify the fault signal. To evaluate the performance of the proposed algorithm, we used one second long normal/abnormal vibration signals of an induction motor sampled at 8kHz. Experimental results showed that the proposed algorithm achieves about 100% accuracy in fault classification, and it provides 50% improved accuracy when compared to the existing fault detection algorithm using a cross-covariance method. In a real-world data acquisition environment, unnecessary noise components are usually included to the real signal. Thus, we conducted an additional simulation to evaluate how well the proposed algorithm classifies the fault signals in a circumstance where a white Gaussian noise is inserted into the fault signals. The simulation results showed that the proposed algorithm achieves over 98% accuracy in fault classification. Moreover, we developed a testbed system including a TI's DSP (digital signal processor) to implement and verify the functionality of the proposed algorithm.

Prediction of Undrained Shear Strength of Normally Consolidated Clay with Varying Consolidation Pressure Ratios Using Artificial Neural Networks (인공신경회로망을 이용한 압밀응력비에 따른 정규압밀점토의 비배수전단강도 예측)

  • 이윤규;윤여원;강병희
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.75-81
    • /
    • 2000
  • The anisotropy of soils has an important effect on stress-strain behavior. In this study, an attempt has been made to implement artificial neural network model for modeling the stress-strain relationship and predicting the undrained shear strength of normally consolidated clay with varying consolidation pressure ratios. The multi-layer neural network model, adopted in this study, utilizes the error back-propagation loaming algorithm. The artificial neural networks use the results of undrained triaxial test with various consolidation pressure ratios and different effective vertical consolidation pressure fur learning and testing data. After learning from a set of actual laboratory testing data, the neural network model predictions of the undrained shear strength of the normally consolidated clay are found to agree well with actual measurements. The predicted values by the artificial neural network model have a determination coefficient$(r^2)$ above 0.973 compared with the measured data. Therefore, this results show a positive potential for the applications of well-trained neural network model in predicting the undrained shear strength of cohesive soils.

  • PDF

A Study on the Simulation of Runoff Hydograph by Using Artificial Neural Network (신경회로망을 이용한 유출수문곡선 모의에 관한 연구)

  • An, Gyeong-Su;Kim, Ju-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.1
    • /
    • pp.13-25
    • /
    • 1998
  • It is necessary to develop methodologies for the application of artificial neural network into hydrologic rainfall-runoff process, although there is so much applicability by using the functions of associative memory based on recognition for the relationships between causes and effects and the excellent fitting capacity for the nonlinear phenomenon. In this study, some problems are presented in the application procedures of artificial neural networks and the simulation of runoff hydrograph experiences are reviewed with nonlinear functional approximator by artificial neural network for rainfall-runoff relationships in a watershed. which is regarded as hydrdologic black box model. The neural network models are constructed by organizing input and output patterns with the deserved rainfall and runoff data in Pyoungchang river basin under the assumption that the rainfall data is the input pattern and runoff hydrograph is the output patterns. Analyzed with the results. it is possible to simulate the runoff hydrograph with processing element of artificial neural network with any hydrologic concepts and the weight among processing elements are well-adapted as model parameters with the assumed model structure during learning process. Based upon these results. it is expected that neural network theory can be utilized as an efficient approach to simulate runoff hydrograph and identify the relationship between rainfall and runoff as hydrosystems which is necessary to develop and manage water resources.

  • PDF

RC Circuit Parameter Estimation for DC Electric Traction Substation Using Linear Artificial Neural Network Scheme (선형인공신경망을 이용한 직류 전철변전소의 RC 회로정수 추정)

  • Bae, Chang Han;Kim, Young Guk;Park, Chan Kyoung;Kim, Yong Ki;Han, Moon Seob
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.314-323
    • /
    • 2016
  • Overhead line voltage of DC railway traction substations has rising or falling characteristics depending on the acceleration and regenerative braking of the subway train loads. The suppression of this irregular fluctuation of the line voltage gives rise to improved energy efficiency of both the railway substation and the trains. This paper presents parameter estimation schemes using the RC circuit model for an overhead line voltage at a 1500V DC electric railway traction substation. A linear artificial neural network with a back-propagation learning algorithm was trained using the measurement data for an overhead line voltage and four feeder currents. The least square estimation method was configured to implement batch processing of these measurement data. These estimation results have been presented and performance analysis has been achieved through raw data simulation.

Online Handwritten Digit Recognition by Smith-Waterman Alignment (Smith-Waterman 정렬 알고리즘을 이용한 온라인 필기체 숫자인식)

  • Mun, Won-Ho;Choi, Yeon-Seok;Lee, Sang-Geol;Cha, Eui-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.27-33
    • /
    • 2011
  • In this paper, we propose an efficient on-line handwritten digit recognition base on Convex-Concave curves feature which is extracted by a chain code sequence using Smith-Waterman alignment algorithm. The time sequential signal from mouse movement on the writing pad is described as a sequence of consecutive points on the x-y plane. So, we can create data-set which are successive and time-sequential pixel position data by preprocessing. Data preprocessed is used for Convex-Concave curves feature extraction. This feature is scale-, translation-, and rotation-invariant. The extracted specific feature is fed to a Smith-Waterman alignment algorithm, which in turn classifies it as one of the nine digits. In comparison with backpropagation neural network, Smith-Waterman alignment has the more outstanding performance.

Automatic Interpretation of Epileptogenic Zones in F-18-FDG Brain PET using Artificial Neural Network (인공신경회로망을 이용한 F-18-FDG 뇌 PET의 간질원인병소 자동해석)

  • 이재성;김석기;이명철;박광석;이동수
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.455-468
    • /
    • 1998
  • For the objective interpretation of cerebral metabolic patterns in epilepsy patients, we developed computer-aided classifier using artificial neural network. We studied interictal brain FDG PET scans of 257 epilepsy patients who were diagnosed as normal(n=64), L TLE (n=112), or R TLE (n=81) by visual interpretation. Automatically segmented volume of interest (VOI) was used to reliably extract the features representing patterns of cerebral metabolism. All images were spatially normalized to MNI standard PET template and smoothed with 16mm FWHM Gaussian kernel using SPM96. Mean count in cerebral region was normalized. The VOls for 34 cerebral regions were previously defined on the standard template and 17 different counts of mirrored regions to hemispheric midline were extracted from spatially normalized images. A three-layer feed-forward error back-propagation neural network classifier with 7 input nodes and 3 output nodes was used. The network was trained to interpret metabolic patterns and produce identical diagnoses with those of expert viewers. The performance of the neural network was optimized by testing with 5~40 nodes in hidden layer. Randomly selected 40 images from each group were used to train the network and the remainders were used to test the learned network. The optimized neural network gave a maximum agreement rate of 80.3% with expert viewers. It used 20 hidden nodes and was trained for 1508 epochs. Also, neural network gave agreement rates of 75~80% with 10 or 30 nodes in hidden layer. We conclude that artificial neural network performed as well as human experts and could be potentially useful as clinical decision support tool for the localization of epileptogenic zones.

  • PDF