• 제목/요약/키워드: 역학적 거동특성

검색결과 608건 처리시간 0.026초

Characteristic of Impact Behavior of Laminated Composite Plates due to Initial Stress (복합적층판의 초기응력에 의한 충격거동 특성)

  • Kim, Seung--Deog;Kang, Joo-Won;Kwon, Suk-Jun
    • Journal of Korean Association for Spatial Structures
    • /
    • 제11권3호
    • /
    • pp.77-83
    • /
    • 2011
  • Laminated composite plates have shown their superiority over metals in applications requiring high specific strength, high specific modulus, and so on. Therefore, they have used in various industry. However, they have poor resistance to impact compared to typical metal materials. To resolve this problem by many researchers for a variety of studies have been attempted. This study investigates characteristic of impact behavior of laminated composite plates due to initial stress. Using finite element program which involved the indentation law, we investigate characteristic of impact behavior of laminated composite plates due to initial stress.

Coupled Analysis with Digimat for Realizing the Mechanical Behavior of Glass Fiber Reinforced Plastics (유리섬유 강화 플라스틱의 역학적 거동 구현을 위한 Digimat와의 연성해석 연구)

  • Kim, Young-Man;Kim, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제32권6호
    • /
    • pp.349-357
    • /
    • 2019
  • Finite element method (FEM) is utilized in the development of products to realistically analyze and predict the mechanical behavior of materials in various fields. However, the approach based on the numerical analysis of glass fiber reinforced plastic (GFRP) composites, for which the fiber orientation and strain rate affect the mechanical properties, has proven to be challenging. The purpose of this study is to define and evaluate the mechanical properties of glass fiber reinforced plastic composites using the numerical analysis models of Digimat, a linear, nonlinear multi-scale modeling program for various composite materials such as polymers, rubber, metal, etc. In addition, the aim is to predict the behavior of realistic polymeric composites. In this regard, the tensile properties according to the fiber orientation and strain rate of polybutylene terephthalate (PBT) with short fiber weight fractions of 30wt% among various polymers were investigated using references. Information on the fiber orientation was calculated based on injection analysis using Moldflow software, and was utilized in the finite element model for tensile specimens via a mapping process. LS-Dyna, an explicit commercial finite element code, was used for coupled analysis using Digimat to study the tensile properties of composites according to the fiber orientation and strain rate of glass fibers. In addition, the drawbacks and advantages of LS-DYNA's various anisotropic material models were compared and evaluated for the analysis of glass fiber reinforced plastic composites.

A Theoretical and Experimental Investigation on the Mechanical Behavior of Concrete under Dynamic Loads (동적하중(動的荷重)을 받는 콘크리트의 역학적(力學的) 거동(擧動)에 관한 이론(理論) 및 실험연구(實驗硏究))

  • Oh, Byung Hwan;Kang, Young Jin;Shin, Soo Bong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제9권2호
    • /
    • pp.31-42
    • /
    • 1989
  • An experimental and theoretical investigation was conducted in the present study to explore the mechanical behavior of concrete under dynamic loads. The stress-strain behavior and mechanical characteristics of concrete under various strain-rates were studied from several series of experiments. A new constitutive theory was derived on the basis of viscoplasticity to model the dynamic behavior of concrete. The theory is verified by the present test results as well as other previous test data. It is found from the present study that the strength of concrete is greatly increased with the increase of strain rate and that the rate of strength increase is greater in tension than in compression. The present theory as well as present test results will provide very useful basis to explore the dynamic behavior of concrete structures.

  • PDF

Analysis of Mechanical Behavior and Fracture Toughness $K_{IC}$ on EGW Welded Joints for High Strength EH36-TMCP Ultra Thick Plate (고강도 극후판 EH36-TMCP강 EGW용접부의 역학적 거동 및 파괴인성 $K_{IC}$에 관한 해석)

  • Bang, Hee-Seon;Bang, Han-Sur;Joo, Sung-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제22권6호
    • /
    • pp.565-572
    • /
    • 2009
  • This work intends to establish the reliability and fracture toughness $K_{IC}$ criterion of welded joints by EGW for high strength EH36-TMCP ultra thick plate. For this, firstly thermo elasto-plastic analysis has been carried out on two pass X-groove butt joint model to clarify the thermal and mechanical behaviour(residual stress, plastic strain, magnitude of stress and their distribution and production mechanism). Moreover, to establish fracture criterion, analysis of fracture toughness $K_{IC}$ has been performed under the notch machined and residual stress with the load condition on EGW welded joints. A quantitative fracture criterion for EGW welded joints is suggested by using $K_{IC}$.

Numerical Modeling of Coupled Thermo-hydro-mechanical Behavior of MX80 Bentonite Pellets (MX80 벤토나이트 펠렛의 열-수리-역학적 복합거동 모델링)

  • Lee, Changsoo;Choi, Heui-Joo;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • 제30권5호
    • /
    • pp.446-461
    • /
    • 2020
  • Numerical simulations of CIEMAT column test in Spain are performed to investigate the coupled thermo-hydro-mechanical (THM) behavior of MX80 bentonite pellets using TOUGH2-FLAC3D. The heater power and injection pressure of water in the numerical simulations are identical to those in the laboratory test. To investigate the applicability of the thermo-hydraulic (TH) model used in TOUGH2 code to prediction of the coupled TH behavior, the simulation results are compared with the observations of temperature and relative humidity with time. The tendencies of the coupled behavior observed in the test are well represented by the numerical models and the simulator in terms of temperature and relative humidity evolutions. Moreover, the performance of the models for the reproduction and prediction of the coupled TH behavior is globally satisfactory compared with the observations. However, the calculated stress change is relatively small and slow due to the limitations of the simple elastic and swelling pressure model used in numerical simulations. It seems that the two models are insufficient to realistically reproduce the complex coupled THM behavior in the bentonite pellets.

A Study of the Influence of Roughness on fracture Shear Behaviour and Permeability (거칠기가 절리의 전단거동 및 투수성에 미치는 영향에 관한 연구)

    • Tunnel and Underground Space
    • /
    • 제12권4호
    • /
    • pp.312-320
    • /
    • 2002
  • It is well-known that when single rock fractures undergo shear displacement, they are influenced by the boundary conditions and fracture roughness. In this case, aperture geometry will change by means of dilation due to the shear displacement. As fractures become the flow paths, fluid flow through rock fractures is affected by the void geometry. In this study, therefore, the influence of roughness on shear behavior of fractures has been investigated, and the resulting hydraulic behavior has been analyzed. In order for this study, a statistical method has been used to generate rough fractures, and they have been adopted into new conceptual models fur fracture shearing and flow calculations. The main contributions of this study are as follows: firstly, fracture shear behavior becomes less brittle with decreasing fracture roughness and increasing normal stress. Then, the characteristics of aperture distribution becomes those of roughness of fractures indicating its hydraulic significance. Finally, it is observed that with decreasing fracture roughness the breakdown of channel flow occurs more slowly.

Aerodynamic Characteristics and Wing Tip Vortex Behavior of Three-Dimensional Symmetric Wing According to Heights (대칭단면을 갖는 3 차원 날개의 지면고도에 따른 공력특성과 끝단와 거동)

  • Yoo, Younghyun;Lee, Sanghwan;Lee, Juhee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제36권12호
    • /
    • pp.1161-1169
    • /
    • 2012
  • A numerical study has been conducted to investigate the aerodynamic characteristics and behavior of a wing-tip vortex around a three-dimensional symmetric wing (NACA0015) in the vicinity of the ground. The aerodynamic characteristics and the wing-tip vortex change as a wing approaches the ground as a result of two different phenomena: the ground effect and the Venturi effect. The ground effect increases lift and decreases drag whereas the Venturi effect generates negative lift and increases drag suddenly. A symmetric airfoil experiences both phenomena with respect to changes in the angle of attack. In the case of a NACA0015 airfoil, the Venturi effect is dominant at small angles of attack but the ground effect is dominant at large angles of attack. Interestingly, both phenomena can be observed at the 4 degree of angle of attack. The vortex core moves inside a wing when the wing experiences the Venturi effect, whereas the vortex core moves outward when the wing experiences the ground effect.

Numerical Simulation for Characteristics of Rock Strength and Deformation Using Grain-Based Distinct Element Model (입자 기반 개별요소모델을 통한 암석의 강도 및 변형 특성 모사)

  • Park, Jung-Wook;Lee, Yun-Su;Park, Chan;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • 제24권3호
    • /
    • pp.243-254
    • /
    • 2014
  • The present study introduces a numerical technique to simulate the mechanical behavior of brittle rock, based on a grain-based model combined with Universal Distinct Element Code (GBM-UDEC). Using the technique, the microstructure of rock sample was represented as an assembly of deformable polygonal grains, and the failure process with the evolution of micro tensile cracks under compression was examined. In terms of the characteristics of strength and deformation, the behaviors of the simulated model showed good agreement with the observations in the laboratory-scale experiments of rock.

다단형 도시폐기물 매립지의 침하모델 계수 분석

  • 김용인;손영중;장연수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.192-197
    • /
    • 2004
  • 폐기물 매립층의 침하는 매립 폐기물의 조성특성의 영향으로 인하여 침하특성이 일반 흙의 토질역학적 거동과 다르게 나타난다. 폐기물의 침하특성은 매립당시 나타나는 폐기물 하중에 의한 침하특성과 향후 장기적으로 유발되는 생화학적 침하특성을 구분하여 규명하는 것이 필요하다. 본 연구에서는 국내 대표적 매립지 폐기물 침하에 대한 계측자료를 바탕으로 역학적 일차 압축침하와 생화학적 이차 압축침하에 대한 침하특성계수를 산정하였다. 또한 Sower(1973)의 매립지 폐기물에 대한 침하량 산정식을 응용하여 다단형 매립지 폐기물에 적용할 수 있는 침하량 산정식을 구성하였다.

  • PDF

공주지역 퇴적암의 풍화특성에 관한 연구

  • 신방웅;최기봉;이봉직;배우석
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 한국안전학회 1998년도 추계 학술논문발표회 논문집
    • /
    • pp.303-308
    • /
    • 1998
  • 암반을 대상으로 하는 건설공사는 많은 시간과 비용, 설계, 시공, 안전상에 많은 문제점을 일으키고 있다. 이러한 암반들은 흡수, 풍화 등에 기인하여 안정성이 약화되어 낙석, 산사태, 붕괴 등의 위험을 안고 있으며 이러한 현상은 우기, 해빙기에 두드러지게 나타나고 있다 비균질, 비등방성의 역학적 성질을 지닌 암석은 변형 거동을 완벽하게 예측하지는 못하고 있는 실정으로 이러한 거동은 암석의 종류와 구성 광물, 내부 불연속면의 상태, 응력 조건과 온도, 습도의 함수비등과 같은 다양한 요소에 의해 영향을 받으며, 이러한 경향은 퇴적암의 경우 두드러지게 나타나고 있다. (중략)

  • PDF