• Title/Summary/Keyword: 역청성 오일 포함 원료

Search Result 2, Processing Time 0.016 seconds

Study on Pyrolysis Characteristics for Upgrading of Bitumen-Like Heavy Oil Contained in Indonesian Resources (인도네시아산 자원 내에 포함된 역청성 오일의 경질화를 위한 열분해 특성에 관한 연구)

  • Jang, Jung Hee;Han, Gi Bo;Park, Cheon-kyu;Jeon, Cheol-Hwan;Kim, Jae-Kon;Kwak, Hyun
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.292-298
    • /
    • 2016
  • In this study, the pyrolysis process was carried out in order to upgrade of heavy oil contained in the resources from Indonesia. In order to investigate the composition and basic properties of the heavy oil contained in the resources, the various analytical methods was used and then the TGA (thermogravimetric) method was especially used for the thermal degradation characteristics of heavy oil in the pyrolysis. From the results obtained from the various analytical methods, the reaction conditions such as the reaction temperature was collected for the pyrolysis process and the pyrolysis using the resources containing the heavy oil was conducted using the fixed-bed reactor under the various reaction conditions. Consequently, We found that the content of heavy oil contained in the resources was about 35% and the conversion of heavy oil and the recovery efficiency of thermal degradation oil were about 21 and 80%, respectively.

Study on basic characteristics for utilization of bituminous pyrolysis by-products (인도네시아 역청 열분해 무기 부산물의 활용을 위한 기초 특성 연구)

  • Jang, Jung Hee;Han, Gi Bo;Park, Cheon-Kyu;Jeon, Cheol-Hwan;Kim, Jae-Kon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.892-898
    • /
    • 2017
  • In this study, the basic properties of recoverable gaseous and solid materials were investigated from heavy oil contained in the resources. The basic characteristics of pyrolysis reaction for the conversion of bituminous oil to pyrolysis various temperature were investigated. The characteristics of gas and solid phase byproducts were also investigated with a laboratory scale fixed bed reactor according to various reaction temperature. As a result, it was confirmed that the oil yield was about 17% at $550^{\circ}C$ and $CH_4$, $CaCO_3$ and CaO could be recovered as by-products.