• 제목/요약/키워드: 역전파 인공지능기법

검색결과 5건 처리시간 0.009초

인공신경망을 이용한 강우예측기법에 관한 연구 (Study on Precipitation Prediction Technique using Artificial Neural Network)

  • 여운기;지홍기;이순탁
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1412-1416
    • /
    • 2009
  • 최근의 극심한 기상이변으로 인하여 발생되는 이상호우의 예측에 관한 사항은 치수 이수는 물론 방재의 측면에서도 역시 매우 중요한 관심사로 부각되고 있다. 강우를 예측하기 위해 많은 방법들이 사용되고 있으나 강우의 메커니즘은 매우 복잡하여 수문순환과정에서 가장 예측하기 힘든 요소이며, 추계학적 예측모형이나 확정론적 예측모형 모두에 있어 상당한 불확실성을 내포하고 있다. 기상예측모형 등을 이용하여 강우예측에 대한 정도를 높여가고는 있으나 많은 수문학적 모형에서 요구하는 시공간적으로 정도가 높은 강우를 예측하기에는 힘들다. 인공신경망은 과거자료의 입 출력 패턴에서 정보를 추출하여 지식으로 보유하고, 이를 근거로 새로운 상황에 대한 해답을 제시하도록 하는 인공지능분야의 학습기법으로 인간이 과거의 경험과 훈련으로 지식을 축적하듯이 시스템의 입 출력에 의하여 연결강도를 최적화함으로서 모형의 구조를 스스로 조직화하기 때문에 모형의 구조에 적합한 최적 매개변수를 추정할 수 있다. 따라서 정확한 예측이 어려운 강우사상을 과거의 자료로부터 신경망의 수학적 알고리즘을 통해 강우의 예측에 적용할 수 있을 것이다. 따라서 본 연구에서는 이러한 인공신경망의 기법 중 오류 역전파 알고리즘을 통하여 과거의 강우사상들을 입 출력 자료로 이용하여 인공신경망을 학습시켜 강우의 예측에 대한 정도를 높이도록 하였다.

  • PDF

레이저 용접물의 용접성 평가 (An Weldability Estimation of Laser Welded Specimens)

  • 이정익
    • 한국공작기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.60-68
    • /
    • 2007
  • It has been conducted by laser vision sensor for weldability estimation of front-bead after doing high speed butt laser welding of any condition. It has been developed a real time GUI(Graphic User Interface) system for weldability application in the basis of texts and field qualify levels. In the reference of bead imperfections, defects absolute position and defects intensity index of front-bead in the basis of formability reference, it has been produced a weldability estimation and defects intensity index of back-bead by back propagation neural network. In the result of by comparing measuring data by laser vision sensor of back-bead and data by back propagation neural network of one, it has been shown the similar results. Finally, under knowledge of welding condition in production line, it has been conducted a weldability estimation of back-bead only in knowledge of informations of front-bead data without using laser vision sensor or welding inspection experts and furthermore it can be used data for final inspection results of back-bead.

인공신경망과 유전자알고리즘을 이용한 수위예측에 관한 연구 (Study on Water Stage Prediction by Artificial Neural Network and Genetic Algorithm)

  • 여운기;지홍기;이순탁
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1159-1163
    • /
    • 2010
  • 최근의 극심한 기상이변으로 인하여 발생되는 유출량의 예측에 관한 사항은 치수 이수는 물론 방재의 측면에서도 역시 매우 중요한 관심사로 부각되고 있다. 강우-유출 관계는 유역의 수많은 시 공간적 변수들에 의해 영향을 받기 때문에 매우 복잡하여 예측하기 힘든 요소이다. 과거에는 추계학적 예측모형이나 확정론적 예측모형 혹은 경험적 모형 등을 사용하여 유출량을 예측하였으나 최근에는 인공신경망과 퍼지모형 그리고 유전자 알고리즘과 같은 인공지능기반의 모형들이 많이 사용되고 있다. 하지만 유출량을 예측하고자 할 때 학습자료 및 검정자료로써 사용되는 유출량은 수위-유량 관계곡선식으로부터 구하는 경우가 대부분으로 이렇게 유도된 유출량의 경우 오차가 크기 때문에 그 신뢰성에 문제가 있을 것으로 판단된다. 따라서 본 논문에서는 선행우량 및 수위자료로부터 단시간 수위예측에 관해 연구하였다. 신경망은 과거자료의 입 출력 패턴에서 정보를 추출하여 지식으로 보유하고, 이를 근거로 새로운 상황에 대한 해답을 제시하도록 하는 인공지능분야의 학습기법으로 인간이 과거의 경험과 훈련으로 지식을 축적하듯이 시스템의 입 출력에 의하여 연결강도를 최적화함으로서 모형의 구조를 스스로 조직화하기 때문에 모형의 구조에 적합한 최적 매개변수를 추정할 수 있다. 따라서 정확한 예측이 어려운 하천수위를 과거의 자료로 부터 학습된 신경망의 수학적 알고리즘을 통해 유출량의 예측에 적용할 수 있을 것이다. 유전자 알고리즘은 적자생존의 생물학 원리에 바탕을 둔 최적화 기법중의 하나로 자연계의 생명체 중 환경에 잘 적응한 개체가 좀 더 많은 자손을 남길 수 있다는 자연선택 과정과 유전자의 변화를 통해서 좋은 방향으로 발전해 나간다는 자연 진화의 과정인 자연계의 유전자 메커니즘에 바탕을 둔 탐색 알고리즘이다. 즉, 자연계의 유전과 진화 메커니즘을 공학적으로 모델화함으로써 잠재적인 해의 후보들을 모아 군집을 형성한 뒤 서로간의 교배 혹은 변이를 통해서 최적 해를 찾는 계산 모델이다. 따라서 본 연구에서는 인공신경망의 가중치를 유전자 알고리즘에 의해 최적화시킨후 오류역전파알고리즘에 의해 신경망의 학습을 진행하는 모형으로 감천유역의 선산수위표지점의 수위를 1시간~6시간까지 예측하였다.

  • PDF

기업부도예측을 위한 인공신경망 모형에서의 사례선택기법에 의한 데이터 마이닝 (Data Mining using Instance Selection in Artificial Neural Networks for Bankruptcy Prediction)

  • Kim, Kyoung-jae
    • 지능정보연구
    • /
    • 제10권1호
    • /
    • pp.109-123
    • /
    • 2004
  • 기업부도예측은 재무와 경영의사결정문제에서의 주된 인공신경망 응용분야라 할 수 있다. 일반적으로 인공신경망은 이 분야에서 매우 좋은 성과를 보이는 것으로 알려져 있지만 종종 잡음이 심한 데이터에 대해서는 일관성 있고 예측가능한 성과를 보이지 못하는 경우가 있다. 특히 학습용 자료가 매우 많아서 학습시간과 자료수집비용이 과대한 경우에는 적절한 자료의 축소가 되지 않고는 인공신경망을 학습시키는 것이 불가능한 경우도 있다. 사례선택기법은 자료의 차원을 축약시켜 주며 직접적으로 자료를 축소시켜 주는 방법이다. 사례기반 학습기법에서는 이미 몇 연구가 사례선택기법의 필요성을 주장한 바 있으나 인공신경망 모형에서 사례선택기법의 필요성을 주장한 연구는 거의 없다. 본 연구에서는 기업부도예측을 위한 인공신경망 모형에서 유전자 알고리즘을 이용한 사례선택기법을 제안한다. 본 연구에서 유전자 알고리즘은 다층 인공신경망에서의 계층별 연결강도를 최적화하고, 동시에 학습에 적합한 사례를 선택한다. 유전자 알고리즘에 의해 결정된 계층별 연결강도는 역전파오류 학습기법에서 종종 발생하는 국부 최적해에 수렴하는 현상을 최소화해 줄 것으로 기대되고, 선택된 학습용 사례는 학습시간의 단축과 예측성과를 향상시켜 줄 것으로 기대된다. 본 연구에서는 제안한 모형과 주요 데이터 마이닝 기법들의 성과를 비교 연구한다. 실험결과, 제안된 방법이 인공신경망에서의 사례선택기법으로 유용한 것으로 나타났다.

  • PDF

역전파 알고리즘을 이용한 최적의 교통안전 평가 모형개발 (Development of Optimum Traffic Safety Evaluation Model Using the Back-Propagation Algorithm)

  • 김중효;권성대;홍정표;하태준
    • 대한토목학회논문집
    • /
    • 제35권3호
    • /
    • pp.679-690
    • /
    • 2015
  • 교통사고 피해를 최소화하기 위해서는 차량과 도로 체계에 대한 공학적인 개선을 통하여 교통사고 원인을 제거해야 한다. 일반적으로 안정성과 효율성이 부족한 도로는 교통사고가 지속적으로 발생할 가능성이 크고 이를 개선하는데 막대한 사회적 비용과 시간이 소요되며, 부적절한 환경 요인으로 발생한 교통사고는 국가적으로 큰 피해를 발생시키게 된다. 따라서 본 연구는 최근 인공지능 분야 중 활발히 연구 중인 역전파 알고리즘(Back-Propagation Algorithm : BPA)을 이용하여 신호교차로를 대상으로 최적의 교통안전 평가기법을 제시하고자 하였다. 본 연구는 광주광역시내 교통혼잡과 교통사고가 빈번하게 발생하고 있는 신호교차로 지점을 대상으로, BPA를 이용하여 보다 신뢰성 높은 교통안전 평가 모형을 개발하고자 다음과 같은 일련의 방법으로 연구를 수행하였다. 첫째, 신호교차로 교통사고와 교통상충간의 순위상관분석을 실시하여 교통사고 순위와 교통상충 순위가 통계적으로 유의함을 확인하였다. 이는 교통상충이 신호교차로 교통안전 평가 변수로 사용될 수 있음에 따라 설명변수로 입력되고 교통사고가 종속변수인 선형회귀모형을 개발하는데 이용하였다. 둘째, 신호교차로의 교통량과 진입 진출 차로수 차이 등을 교통사고의 설명변수로 간주하여 다중회귀분석을 통해 교통사고 예측모형을 개발하였다. 셋째, 교통량과 도로 기하구조 요소를 모형의 설명변수로 설정하고 교통상충을 종속변수로 하여 BPA를 이용한 최적의 교통안전 평가 모형을 개발하였다. 마지막으로, 교통사고 실측값, 다중회귀모형, BPA에 의한 교통사고 예측값을 평균제곱근오차 방법으로 모형의 적합도 비교 분석을 하였다. 본 연구의 결과, BPA에 의해 도출된 교통사고 예측값과 교통사고 실측값 사이의 평균제곱오차는 3.89로 계산되어 BPA가 다중회귀 모형보다 상대적으로 교통안전 평가능력이 우수한 것으로 나타나 실제 신호교차로 교통안전도를 평가하는데 효과적으로 활용될 수 있을 것으로 판단되고 추후, 교통안전정책 수립시 실질적인 도움이 될 것으로 기대된다.