• Title/Summary/Keyword: 역전파학습 알고리즘

Search Result 290, Processing Time 0.024 seconds

Control Method using Neural Network of Hybrid Learning Rule (혼합형 학습규칙 신경 회로망을 이용한 제어 방식)

  • 임중규;이현관;권성훈;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.370-374
    • /
    • 1999
  • The proposed algorithm used the Hybrid teaming rule in the input and hidden layer, and Back-Propagation teaming rule in the hidden and output layer. From the results of simulation of tracking control with one link manipulator as a plant, we verify the usefulness of the proposed control method to compare with common direct adaptive neural network control method; proposed hybrid teaming rule showed faster loaming time faster settling time than the direct adaptive neural network using Back-propagation algorithm. Usefulness of the proposed control method is that it is faster the learning time and settling time than common direct adaptive neural network control method.

  • PDF

Semiconductor Wafer ID Recognition System using an Improved Neural Network (개선된 신경회로망을 이용한 반도체 Wafer ID 인식시스템)

  • 조영임
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.549-552
    • /
    • 2004
  • 본 논문에서는 반도체의 Wafer ID 문자인식을 위해 기존의 오류 역전파 학습알고리즘을 개선하여 최적의 학습 학습 조건에 관해 연구하였다. 결과, 오류 역전파 학습알고리즘의 학습 최적 조건은 은닉층수는 1층, n값은 0.6 이상, 은닉층 노드수는 10개일 때 99%의 높은 인식률을 보였다 본 논문에서 제안하는 최적조건물 사용함으로써 기존의 오류역전파 학습 알고리즘이 가진 문제점을 해결할 수 있었다.

  • PDF

An Optimal Learning System for an Efficient Wafer ID Recognition System (효율적인 Wafer ID 문자인식을 위한 최적 학습시스템)

  • 조영임;홍유식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.199-201
    • /
    • 2004
  • 본 논문에서는 반도체의 Wafer ID 문자인식을 위해 기존의 오류 역전파 학습알고리즘을 개선하여 최적의 학습 조건에 관해 연구하였다. 결과, 오류 역전파 학습알고리즘의 학습 최적 조건은 은닉 층수는 1층, n값은 0.6 이상, 은닉층 노드수는 10개일 때 99%의 높은 인식률을 보였다. 본 논문에서 제안하는 최적조건을 사용함으로써 기존의 오류역전파 학습 알고리즘이 가진 문제점을 해결할 수 있었다.

  • PDF

The Study on the Method which escapee from Local maxima of Error-Backpropagation Algorithm (오류역전파 알고리즘의 Local maxima를 탈출하기 위한 방법에 관한 연구)

  • 서원택;조범준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.313-315
    • /
    • 2001
  • 본 논문에서 소개하는 알고리즘을 은닉층의 뉴런의 수를 학습하는 동안 동적으로 변화시켜 역전파 알고리즘의 단점인 Local maxima를 탈출하고 또한 은닉층의 뉴런의 수를 결정하는 과정을 없애기 위해 연구되었다. 본 알고리즘의 성능을 평가하기 위해 두 가지 실험에 적용하였는데 첫번째는 Exclusive-OR 문제이고 두번째는 7$\times$8 한글 자음과 모음의 폰트 학습에 적용하였다. 이 실험의 결과로 네트웍이 local maxima에 빠져드는 확률이 줄어드는 것을 알 수 있었고 학습속도 또한 일반적인 역전파 알고리즘보다 빠른 것으로 증명되었다.

  • PDF

The Multisignal Improvement of Adaptive Receiver using Adaptive Back-Propagation Algorithm (적응 역전파 알고리즘을 이용한 적응 수신기의 다중 신호 개선)

  • Kim, Chul-Young;Jang, Hyuk;Suk, Kyung-Hyu;Na, Sand-Dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.188-194
    • /
    • 2000
  • 이동 통신에서 제한된 대역폭 채널에 내부 심볼 간섭을 감소시키기 위해, 등화기 기법을 필요로한다. 채널간의 비선형 왜곡을 효율적으로 다루는 대안을 가진 신경망을 사용하여 새로운 활성 함수로 구성된 적응 역전파 알고리즘을 연구한다. 신경망은 적응 역전파 알고리즘을 통해 신호를 복조하도록 학습한다. 특히 수정된 적응 역전파 알고리즘이 근접된 최적 수행성을 갖는 단일 및 다중 사용자 검출을 위한 샘플링 기법은 다중 사용자 환경에서 필요한 수신기들의 수행성을 평가하기 위한 시뮬레이션을 위하여 사용이 된다. 채널간의 비선형 왜곡에 효율적으로 다루기 위한 대안을 가진 신경망을 적용하여 본 논문에서 는 새로운 활성 함수로 구성된 적응 역전파 알고리즘을 제안하고, 컴퓨터 시뮬레이션에 의해서 분석된다. 반복적 최소 평균 자승(RLS) 알고리즘을 적용한 기존 수신기 및 적응 역전파 신경망과 비교하여, 채널 왜곡이 비선형 일 때에 비트 에러율(BER)이 현저하게 개선됨을 나타낸다. 적응 역전파 알고리즘 기법을 통해 기존 수신기와 신경망을 사용한 수신기의 수행을 컴퓨터 시뮬레이션을 통해 비교 분석하여 제안된 신경망 수신기의 성능이 우수함을 인증한다.

  • PDF

A Robust Propagation Algorithm for Function Approximation (함수근사를 위한 로버스트 역전파 알고리즘)

  • Kim, Sang-Min;Hwang, Chang-Ha
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.3
    • /
    • pp.747-753
    • /
    • 1997
  • Function approximation from a set of input-output parirs has numerous applications in scientiffc and engineer-ing areas.Multiayer feedforward neural networks have been proposed as a good approximator of noninear function.The back propagation (BP) algorithm allows muktiayer feedforward neural networks oro learn input-output mappongs from training samples.However, the mapping acquired through the BP algorithm nay be cor-rupt when errorneous trauning data are employed.In this paper we propose a robust BP learning algorithm that is resistant to the errormeous data and is capable of rejecting gross errors during the approximation process.

  • PDF

A Framework for an Advanced Learning Mechanism in Context-aware Systems using Improved Back-Propagation Algorithm (상황 인지 시스템에서 개선된 역전파 알고리즘을 사용하는 진보된 학습 메커니즘을 위한 프레임워크)

  • Zha, Wei;Eo, Sang-Hun;Kim, Gyoung-Bae;Cho, Sook-Kyoung;Bae, Hae-Young
    • The KIPS Transactions:PartD
    • /
    • v.14D no.1 s.111
    • /
    • pp.139-144
    • /
    • 2007
  • In seeking to improve the workload efficiency and inference capability of context-aware systems, we propose a new framework for an advanced teaming mechanism that uses improved bath propagation (BP) algorithm. Even though a learning mechanism is one of the most important parts in a context-aware system, the existing algorithms focused on facilitating systems by elaborating the learning mechanism with user's context information are rare. BP is the most adaptable algorithm for learning mechanism of context-aware systems. By using the improved BP algorithm, the framework we proposed drastically improves the inference capability so that the overall performance is far better than other systems. Also, using the special system cache, the framework manages the workload efficiently. Experiments show that there is an obvious improvement in overall performanre of the context-awareness systems using the proposed framework.

ART1-based Fuzzy Supervised Learning Algorithm (ART1 기반 퍼지 지도 학습 알고리즘)

  • Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.479-484
    • /
    • 2005
  • 본 논문에서는 오류 역전파 알고리즘에서 은닉층의 노드 수를 설정하는 문제와 ART1의 경계 변수의 설정에 따른 인식률이 저하되는 문제점을 개선하기 위해 ART1 알고리즘과 퍼지 단층 지도 학습 알고리즘을 결합한 ART1 기반 퍼지 지도 학습 알고리즘을 제안한다. 제안된 알고리즘은 가중치 조정에 승자 뉴런 방식을 도입하여 은닉층에 해당하는 클래스에 영향을 끼친 패턴들의 정보만 저장하게 하여 은닉층 노드로의 책임 분담에 의한 정체 현상이 일어날 가능성을 줄인다. 그리고 학습시간과 학습의 수렴성도 개선한다. 제안된 알고리즘의 학습 성능을 분석하기 위하여 주민등록번호 분류를 대상으로 실험한 결과, 제안된 방법이 기존의 신경망보다 경계 변수나 모멘트에 민감하지 않으며 학습 시간도 적게 소요되고 수렴성도 우수한 성능이 있음을 확인하였다.

  • PDF

Recognition of Car Plate using Contour Tracking and Enhanced Backpropagation (윤곽선 추적과 개선된 오류 역전파 알고리즘을 이용한 차량 번호판 인식)

  • Jung, Byung-Hee;Lee, Dong-Min;Park, Choong-Shik;Kim, Kwang-Beak
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.467-471
    • /
    • 2005
  • 본 논문에서는 명암도 변화 및 윤곽선 추적 알고리즘과 개선된 오류 역전파 알고리즘을 이용한 차량 번호판 인식 방법을 제안한다. 비영업용 차량 영상을 대상으로 차량 번호판 영역을 추출하기 위해 명암도 변화 특성을 이용하여 차량 번호판 영역을 추출한다. 추출된 차량 번호판 영역에 반복 이진화 방법을 적용하여 차량 번호판의 영역을 이진화하고, 이진화된 차량 번호판 영역에 대해서 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한다. 추출된 개별 코드 인식은 일반화된 델타 학습 방법에 Delta-bar-Delta 알고리즘을 적용하여 학습률을 동적으로 조정하는 개선된 오류 역전파 알고리즘을 적용한다. 제안된 방법의 인식 성능을 평가하기 위하여 실제 비영업용 차량 번호판에 적용한 결과, 기존의 차량 번호판 인식 방법보다 효율적인 것을 확인하였다.

  • PDF

Edge detection method using unbalanced mutation operator in noise image (잡음 영상에서 불균등 돌연변이 연산자를 이용한 효율적 에지 검출)

  • Kim, Su-Jung;Lim, Hee-Kyoung;Seo, Yo-Han;Jung, Chai-Yeoung
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.673-680
    • /
    • 2002
  • This paper proposes a method for detecting edge using an evolutionary programming and a momentum back-propagation algorithm. The evolutionary programming does not perform crossover operation as to consider reduction of capability of algorithm and calculation cost, but uses selection operator and mutation operator. The momentum back-propagation algorithm uses assistant to weight of learning step when weight is changed at learning step. Because learning rate o is settled as less in last back-propagation algorithm the momentum back-propagation algorithm discard the problem that learning is slow as relative reduction because change rate of weight at each learning step. The method using EP-MBP is batter than GA-BP method in both learning time and detection rate and showed the decreasing learning time and effective edge detection, in consequence.