• Title/Summary/Keyword: 여유도 구동기

Search Result 14, Processing Time 0.018 seconds

A Flux Weakening Scheme for Improved Transient Performance of Permanent Magnet Synchronous Machine Drives (빠른 과도 응답을 가지는 영구자석 동기 전동기의 약자속기법)

  • Kwon, Yong-Cheul;Kim, Sungmin;Sul, Seung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.206-207
    • /
    • 2011
  • 지금까지 영구자석 동기 전동기의 구동에 있어서 약자속에 대한 연구는 대부분 정상상태에서의 전류제어성능에 초점이 맞춰져 왔다. 그러나 전류 지령이 급변하는 상황에서는 신속하게 정상상태에 이르는 것이 중요함에도 불구하고, 이에 대한 연구는 많지 않았다. 본 논문에서는 약자속(Flux Weakening) 운전시 전류제어의 과도상태를 개선하여 정상상태에 빠르게 도달하도록 하는 약자속기법을 제안하였다. 제안된 방법은 정상상태의 전류 지령을 결정하는 약자속제어기와, 과도상태에서 전압 여유분을 확보하여 빠르게 정상상태에 이르도록 하는 과도 지령 수정기로 구성된다. 컴퓨터를 이용한 모의 실험과 11kW 영구자석 전동기에 대한 실험을 통하여 제안된 약자속기법의 성능을 확인하였다.

  • PDF

Design of Low Power 4th order ΣΔ Modulator with Single Reconfigurable Amplifier (재구성가능 연산증폭기를 사용한 저전력 4차 델타-시그마 변조기 설계)

  • Sung, Jae-Hyeon;Lee, Dong-Hyun;Yoon, Kwang Sub
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.24-32
    • /
    • 2017
  • In this paper, a low power 4th order delta-sigma modulator was designed with a high resolution of 12 bits or more for the biological signal processing. Using time-interleaving technique, 4th order delta-sigma modulator was designed with one operational amplifier. So power consumption can be reduced to 1/4 than a conventional structure. To operate stably in the big difference between the two capacitor for kT/C noise and chip size, the variable-stage amplifier was designed. In the first phase and second phase, the operational amplifier is operating in a 2-stage. In the third and fourth phase, the operational amplifier is operating in a 1-stage. This was significantly improved the stability of the modulator because the phase margin exists within 60~90deg. The proposed delta-sigma modulator is designed in a standard $0.18{\mu}m$ CMOS n-well 1 poly 6 Metal technology and dissipates the power of $354{\mu}W$ with supply voltage of 1.8V. The ENOB of 11.8bit and SNDR of 72.8dB at 250Hz input frequency and 256kHz sampling frequency. From measurement results FOM1 is calculated to 49.6pJ/step and FOM2 is calculated to 154.5dB.

Parametric Design of Contact-Free Transportation System Using The Repulsive Electrodynamic Wheels (반발식 동전기 휠을 이용한 비접촉 반송 시스템의 변수 설계)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.310-316
    • /
    • 2016
  • We propose a novel contact-free transportation system in which an axial electrodynamic wheel is applied as an actuator. When the electrodynamic wheel is partially overlapped by a fixed conductive plate and rotates over it, three-axis magnetic forces are generated on the wheel. Among these forces, those in the gravitational direction and the lateral direction are inherently stable. Therefore, only the force in the longitudinal direction needs to be controlled to guarantee spatial stability of the wheel. The electrodynamic wheel consists of permanent magnets that are repeated and polarized periodically along the circumferential direction. The basic geometric configuration and the pole number of the wheel influence the stability margin of a transportation system, which would include several wheels. The overlap region between the wheel and the conductive plate is a dominant factor affecting the stiffness in the lateral direction. Therefore, sensitivity analysis for the major parameters of the wheel mechanism was performed using a finite element tool. The system was manufactured based on the obtained design values, and the passive stability of a moving object with the wheels was verified experimentally.

Signal Timing and Intersection Waiting Time Calculation Model using Analytical Method for Active Tram Signal Priority (해석적 방법을 이용한 능동식 트램 우선신호의 신호시간 및 교차로 대기시간 산정 모형)

  • Jeong, Youngje;Jeong, Jun Ha;Joo, Doo Hwan;Lee, Ho Won;Heo, Nak Won
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.4
    • /
    • pp.410-420
    • /
    • 2014
  • This research suggests a new tram signal priority model which determines signal timings and tram intersection waiting time using analytical method. This model can calculate the signal timings for Early Green and Green Extension among the active tram signal priority techniques by tram detection time of upstream detector. Moreover, it can determine the tram intersection waiting time that means tram intersection travel time delay from a vantage point of tram travel. Under the active tram signal priority condition, priority phases can bring additional green time from variable green time of non-priority phases. In this study, the signal timing and tram intersection waiting time calculation model was set up using analytical methods. In case studies using an isolated intersection, this study checks tram intersection waiting time ranged 12.7 to 29.4 seconds when variable green times of non-priority phases are 44 to 10 seconds under 120 seconds of cycle length.