• Title/Summary/Keyword: 엣지 클라우드

Search Result 56, Processing Time 0.022 seconds

Construction of a Virtual Mobile Edge Computing Testbed Environment Using the EdgeCloudSim (EdgeCloudSim을 이용한 가상 이동 엣지 컴퓨팅 테스트베드 환경 개발)

  • Lim, Huhnkuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1102-1108
    • /
    • 2020
  • Mobile edge computing is a technology that can prepare for a new era of cloud computing and compensate for shortcomings by processing data near the edge of the network where data is generated rather than centralized data processing. It is possible to realize a low-latency/high-speed computing service by locating computing power to the edge and analyzing data, rather than in a data center far from computing and processing data. In this article, we develop a virtual mobile edge computing testbed environment where the cloud and edge nodes divide computing tasks from mobile terminals using the EdgeCloudSim simulator. Performance of offloading techniques for distribution of computing tasks from mobile terminals between the central cloud and mobile edge computing nodes is evaluated and analyzed under the virtual mobile edge computing environment. By providing a virtual mobile edge computing environment and offloading capabilities, we intend to provide prior knowledge to industry engineers for building mobile edge computing nodes that collaborate with the cloud.

User A Study on Sustainable Edge and Cloud Computing Paradigm based on Federated Reinforcement Learning (엣지 및 클라우드 컴퓨팅 패러다임에 대한 지속 가능한 연합 강화 학습 연구)

  • Jung-Hyun Woo;Sung-Won Kim;Byung-seok Seo;Kwang-Man Ko
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.902-904
    • /
    • 2024
  • 엣지-클라우드 통신네트워크에서의 지속 가능한 사이버 보안 솔루션을 개발하기 위한 연구는 중요성을 갖는다. 최근의 기술 발전으로 인해 엣지 디바이스와 클라우드 서비스 간의 통신이 활발해지면서 보안 위협이 증가하고 있다. 이에 따라 연합 강화 학습과 같은 첨단 기술을 활용하여 보안 취약점을 탐지하고 대응하는 것이 중요하다. 본 논문에서는 엣지-클라우드 환경에서의 보안 취약점을 식별하고 대응하기 위해 연합 강화 학습을 기반으로 한 솔루션을 제안한다. 이를 통해 네트워크의 안전성을 보장하고 사이버 공격에 대응할 수 있는 기술을 개발하기 위해, 엣지-클라우드 환경에서의 보안 취약점을 식별하고 대응하기 위해 연합 강화 학습 기반으로 한 솔루션을 소개한다.

A Study on the Availability of Surplus Computing Resources in Edge Cloud Environment (엣지 클라우드 환경 잉여 컴퓨팅 자원의 활용을 위한 가용성 확보 방법 연구)

  • Kim, Dong-Wan;Shin, Yong-Tae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.637-640
    • /
    • 2022
  • 최근 빅데이터 및 인공지능의 중요성이 커짐에 따라 클라우드 시스템을 효율적으로 설계하고 관리하기 위한 연구가 활발히 진행 중이다. 본 논문은 기술 발전으로 각 개인은 고성능의 컴퓨팅 자원을 소유하고 있지만, 이 자원이 대부분 잉여 자원으로써 낭비되고 있다는 점을 착안하여, 잉여 컴퓨팅 자원을 효율적으로 활용하기 위해 엣지 클라우드 환경에서 분산된 자원의 가용성을 확보하기 위한 방법을 제안한다.

  • PDF

Development and Study of Cloud-Edge AI Inference Service Based on Microservices (마이크로서비스 기반의 클라우드 엣지 AI 추론 서비스 개발 및 연구)

  • Seo, Ji-Hyun;Jang, Su-min;Cha, Jae-geun;Choi, Hyun-hwa;Kim, Dae-won;Kim, Sun-wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.78-80
    • /
    • 2022
  • 최근 딥러닝을 이용한 영상 분석은 자율주행, 감시카메라 등 다양한 서비스에 필수적으로 활용되고 있으며 실시간 처리 및 보안 요소를 만족하기 위해 기존의 클라우드 컴퓨팅 방식의 단점을 개선한 클라우드 엣지 컴퓨팅 방식을 적용하는 사례가 크게 증가하고 있다. 하지만 사용자 및 단말과 가까운 위치에서 딥러닝 추론을 진행하는 클라우드 엣지 서버는 클라우드 서버와 비교하여 컴퓨팅 자원이 충분하지 않을 경우가 많으며 기존의 딥러닝 모델을 그대로 클라우드 엣지 환경에 적용하는 것은 자원 활용 측면에서 여러가지 문제점들을 갖고 있다. 따라서 본 논문에서는 마이크로서비스 구조를 통해 자원을 보다 유연하게 활용할 수 있도록 개선된 딥러닝 모델로 대규모의 클라이언트 요청을 처리 가능한 동영상 데이터 추론 서비스인 G-Edge AI 추론 서비스 개발에 대해 설명한다.

Efficient Privacy-Preserving Duplicate Elimination in Edge Computing Environment Based on Trusted Execution Environment (신뢰실행환경기반 엣지컴퓨팅 환경에서의 암호문에 대한 효율적 프라이버시 보존 데이터 중복제거)

  • Koo, Dongyoung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.9
    • /
    • pp.305-316
    • /
    • 2022
  • With the flood of digital data owing to the Internet of Things and big data, cloud service providers that process and store vast amount of data from multiple users can apply duplicate data elimination technique for efficient data management. The user experience can be improved as the notion of edge computing paradigm is introduced as an extension of the cloud computing to improve problems such as network congestion to a central cloud server and reduced computational efficiency. However, the addition of a new edge device that is not entirely reliable in the edge computing may cause increase in the computational complexity for additional cryptographic operations to preserve data privacy in duplicate identification and elimination process. In this paper, we propose an efficiency-improved duplicate data elimination protocol while preserving data privacy with an optimized user-edge-cloud communication framework by utilizing a trusted execution environment. Direct sharing of secret information between the user and the central cloud server can minimize the computational complexity in edge devices and enables the use of efficient encryption algorithms at the side of cloud service providers. Users also improve the user experience by offloading data to edge devices, enabling duplicate elimination and independent activity. Through experiments, efficiency of the proposed scheme has been analyzed such as up to 78x improvements in computation during data outsourcing process compared to the previous study which does not exploit trusted execution environment in edge computing architecture.

A Monitoring Scheme Based on Artificial Intelligence in Mobile Edge Cloud Computing Environments (모바일 엣지 클라우드 환경에서 인공지능 기반 모니터링 기법)

  • Lim, JongBeom;Choi, HeeSeok;Yu, HeonChang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.2
    • /
    • pp.27-32
    • /
    • 2018
  • One of the crucial issues in mobile edge cloud computing environments is to monitor mobile devices. Due to the inherit properties of mobile devices, they are prone to unstable behavior that leads to failures. In order to satisfy the service level agreement (SLA), the mobile edge cloud administrators should take appropriate measures through a monitoring scheme. In this paper, we propose a monitoring scheme of mobile devices based on artificial intelligence in mobile edge cloud computing environments. The proposed monitoring scheme is able to measure faults of mobile devices based on previous and current monitoring information. To this end, we adapt the hidden markov chain model, one of the artificial intelligence technologies, to monitor mobile devices. We validate our monitoring scheme based on the hidden markov chain model. The proposed monitoring scheme can also be used in general cloud computing environments to monitor virtual machines.

Tracking Data through Tracking Data Server in Edge Computing (엣지 컴퓨팅 환경에서 추적 데이터 서버를 통한 데이터 추적)

  • Lim, Han-wool;Byoun, Won-jun;Yun, Joobeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.443-452
    • /
    • 2021
  • One of the key technologies in edge computing is that it always provides services close to the user by moving data between edge servers according to the user's movements. As such, the movement of data between edge servers is frequent. As IoT technology advances and usage areas expand, the data generated also increases, requiring technology to accurately track and process each data to properly manage the data present in the edge computing environment. Currently, cloud systems do not have data disposal technology based on tracking technology for data movement and distribution in their environment, so users cannot see where it is now, whether it is properly removed or not left in the cloud system if users request it to be deleted. In this paper, we propose a tracking data server to create and manage the movement and distribution of data for each edge server and data stored in the central cloud in an edge computing environment.

A Study on Vehicle Edge Computing Model for Autonomous Vehicle Service (자율주행차 서비스를 위한 차량 엣지 컴퓨팅 모델 연구)

  • Youn, Joosang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.109-110
    • /
    • 2020
  • 최근 엣지 컴퓨팅을 활용한 자율주행차 서비스 개발 연구가 진행 중이다. 특히, 최근 개발 중인 차량 엣지 컴퓨팅 기술은 도로 상황 및 교통 정보를 실시간으로 수집하여 빠른 처리를 통해 안정된 차량 및 교통 서비스를 제공할 수 있는 기술로 평가받고 있다. 따라서 본 논문에서는 자율주행차 서비스를 위해 차량 엣지 컴퓨팅 간, 엣지-클라우드간 협업 모델을 제안하고 차량 안전 메시지와 같은 긴급 메시지의 빠른 전달을 위한 초지연 메지시 전달 기법을 제안한다.

Development of intelligent video web service based on Micro-service architecture (마이크로 서비스 구조 기반 실시간 지능형 비디오 컨텐츠 제공 서비스 개발)

  • Yu, Miseon;Moon, Jaewon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.43-44
    • /
    • 2020
  • IoT 산업과 인공지능 기술의 발전으로 다양한 데이터를 분석하여 서비스에 쉽게 활용할 수 있게 되었다. 이에 대해 클라우드 기반으로 된 분석 기술이 주로 발전하였으나, 개인 정보 노출 위험성 및 네트워크 종속성 문제를 해결하기 위해 최근에는 엣지 기반으로 분석하고 클라우드와 협업하는 기술 연구가 활발하게 진행되고 있다. 리소스가 제한적인 엣지 디바이스 기반 환경에서 원활한 서비스를 제공하기 위해서는 서비스의 기능을 목적별로 최소화하여 독립적이고 경량화된 어플리케이션을 엣지에 배포하고 실행되게 해야 한다. 마이크로서비스 설계 기법은 이를 해결 할 수 있는 대표적인 방법으로 대두되고 있다. 본 논문에서는 여러 마이크로 서비스의 결과를 전달 받아 최종적으로 적합한 결과를 재생하는 컨텐츠 제공 서비스 구조를 제안하고 구현 결과를 소개하였다. 높은 데이터 처리 성능을 요구하는 영상 처리 서비스를 제공함에 있어 제안하는 방법을 활용하여 엣지 디바이스 활용 효율성을 높이고 보다 만족도 높은 컨텐츠 제공 서비스를 제공할 수 있다.

  • PDF

Edge Computing-Based Unmanned Market Case Study: Maximizing Resource Distribution (엣지 컴퓨팅 기반 무인 마켓 사례 연구: 자원 분배 효율성 극대화)

  • Park, Ji-Hoon;Ryu, Hyeong-Oh;Kim, KyoungRul;Kim, Saehwa
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.221-224
    • /
    • 2019
  • 본 논문에서는 엣지 컴퓨팅을 무인 마켓에 도입하여 엣지 컴퓨팅의 효율성을 확인하고, 로컬 네트워크의 효율적인 대역폭 할당을 위한 두 가지 방법을 제안한다. 무인 마켓과 같이 엄청난 양의 데이터를 필요로 하고 만들어내는 서비스에서는 데이터들을 클라우드로 전송하여 소비자가 불편함을 느끼지 못하도록 빠르게 처리하는 것은 불가능에 가깝다. 그래서 우리는 Amazon Go 를 벤치마킹한 무인 마켓에 엣지 컴퓨팅을 도입하여 이를 구현한다. 그리고 구현한 시스템에서 엣지 컴퓨팅 외에 클라우드 컴퓨팅, 모바일 장치를 적용하여 처리할 때의 응답 시간을 분석하여 엣지 컴퓨팅의 높은 성능을 확인한다. 또한, 구현한 무인 마켓에서 데이터 전송의 효율성을 더욱 높이기 위해 카메라 단위와 매대 단위의 대역폭 할당 기법을 제안한다. 카메라 단위로는 모션 인식기술을 활용하여 움직임이 감지될 때만 각 이미지 프로세스에서 요구되는 고해상도로 송신하는 기법을 제안한다. 매대 단위로는 네트워크에서 수용 가능한 대역폭 임계치에 도달하지 못하게 하기 위해 매대 별 우선순위에 따른 대역폭 할당 스케줄링 기법을 제안한다. 그 결과로 평균 소모대역폭과 최대 소모대역폭을 비교하여 제안한 두 가지 기법이 기존의 방법에 비해 성능을 향상시키는 것을 보인다.