• 제목/요약/키워드: 엣지 네트워크

검색결과 59건 처리시간 0.029초

멀티클러스터 기반 지능형 협업 엣지 네트워크 연구 (Study on Multi-Cluster based Collaborative Edge Networks)

  • 윤주상
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.277-278
    • /
    • 2021
  • 본 논문에서는 멀티클러스터 기반 협업 엣지 네트워크 모델과 지능형 협업 엣지 자원 할당을 위한 정책 생성기 모델을 제안한다. 최근 K8s 기반 클러스터 엣지 시스템 개발이 활발히 진행 중이다. 본 논문에서는 이런 클러스터 기반 엣지 시스템을 네트워크를 통해 멀티클러스터 기반 엣지 시스템으로 구성하는 모델을 제시하고 이 네트워크 모델에서 협업으로 엣지 자원을 할당 할 수 있는 지능형 자원 할당 정책 생성기 구조 및 방법 등을 제안한다.

  • PDF

블록체인 기반의 보안 위협을 예방할 수 있는 IoT 엣지 아키텍처 모델 (IoT Edge Architecture Model to Prevent Blockchain-Based Security Threats)

  • 정윤수
    • 사물인터넷융복합논문지
    • /
    • 제10권2호
    • /
    • pp.77-84
    • /
    • 2024
  • 지난 몇 년 동안 5G와 같은 새로운 저 지연 통신 프로토콜을 기반으로 IoT 엣지가 등장하기 시작했다. 그러나, IoT 엣지는 막대한 이점에도 불구하고, 새로운 보완 위협을 초래하여 이를 해결하기 위한 새로운 보안 솔루션이 필요하다. 본 논문에서는 IoT 시스템을 보완하는 클라우드 환경기반의 IoT 엣지 아키텍처 모델을 제안한다. 제안 모델은 IoT 엣지 장치에서 추출한 네트워크 트래픽 데이터를 기계 학습에 작용하여 사전에 보안 위협을 예방한다. 또한, 제안 모델은 로컬 노드에서 보안 데이터 일부를 할당함으로써 액세스 네트워크(엣지)에서의 부하 및 보안을 보장한다. 제안 모델은 IoT 엣지 환경 중 로컬 노드에 데이터 처리 및 관리의 일부 기능을 할당함으로써 액세스 네트워크(엣지)의 부하를 더욱 줄이는 동시에 취약 부분을 안전하게 보호한다. 제안 모델은 다양한 IoT 기능을 네임 서비스로 가상화하고, 필요에 따라 하드웨어 기능과 충분한 계산 리소스를 로컬 노드에 배포한다.

엣지 및 클라우드 컴퓨팅 패러다임에 대한 지속 가능한 연합 강화 학습 연구 (User A Study on Sustainable Edge and Cloud Computing Paradigm based on Federated Reinforcement Learning)

  • 우정현;김성원;서병석;고광만
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.902-904
    • /
    • 2024
  • 엣지-클라우드 통신네트워크에서의 지속 가능한 사이버 보안 솔루션을 개발하기 위한 연구는 중요성을 갖는다. 최근의 기술 발전으로 인해 엣지 디바이스와 클라우드 서비스 간의 통신이 활발해지면서 보안 위협이 증가하고 있다. 이에 따라 연합 강화 학습과 같은 첨단 기술을 활용하여 보안 취약점을 탐지하고 대응하는 것이 중요하다. 본 논문에서는 엣지-클라우드 환경에서의 보안 취약점을 식별하고 대응하기 위해 연합 강화 학습을 기반으로 한 솔루션을 제안한다. 이를 통해 네트워크의 안전성을 보장하고 사이버 공격에 대응할 수 있는 기술을 개발하기 위해, 엣지-클라우드 환경에서의 보안 취약점을 식별하고 대응하기 위해 연합 강화 학습 기반으로 한 솔루션을 소개한다.

엣지 컴퓨팅 기반 IIoT 보안 연구 동향

  • 전규현;이진규;전승호;서정택
    • 정보보호학회지
    • /
    • 제33권6호
    • /
    • pp.65-77
    • /
    • 2023
  • 산업용 사물 인터넷(IIoT)은 자원 관리 및 최적화, 신속성, 지속가능한 생산, 자동화 등의 특징으로 인해 다양한 산업분 야에서 활발하게 사용되고 있다. 수많은 IIoT 기기에서 발생된 데이터를 처리하는 것은 기존 중앙 처리 시스템에 큰 부담을 주게 된다. 이러한 데이터들의 효과적인 관리를 위해 데이터가 발생한 엣지 기기, 엣지 서버 등 로컬위치에서 실시간으로 프로세스를 실행하여 네트워크 대역폭 절약, 낮은 지연 시간 등 특징을 가진 엣지 컴퓨팅 기술을 사용한다. 하지만, 엣지 컴퓨팅 적용 시, 인터넷과 연결된 IIoT 기기 수 증가, 취약한 IIoT 기기, 분산된 환경으로 인해 공격 표면 확장되어 엣지 컴퓨팅 환경에서의 새로운 보안 위협이 발생할 수 있다. 이에 본 논문에서는 IIoT 및 엣지 컴퓨팅 정의, 아키텍처, 각 산업분야별 적용한 사례에 대해 살펴보고, 엣지 컴퓨팅에서 발생 가능한 보안 위협을 분석하였다. 또한, 엣지 컴퓨팅 기반 IIoT에 대한 각 산업 분야별 보안 연구 동향에 대해서 분석하였다.

엣지 컴퓨팅 기반 무인 마켓 사례 연구: 자원 분배 효율성 극대화 (Edge Computing-Based Unmanned Market Case Study: Maximizing Resource Distribution)

  • 박지훈;류형오;김경률;김세화
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.221-224
    • /
    • 2019
  • 본 논문에서는 엣지 컴퓨팅을 무인 마켓에 도입하여 엣지 컴퓨팅의 효율성을 확인하고, 로컬 네트워크의 효율적인 대역폭 할당을 위한 두 가지 방법을 제안한다. 무인 마켓과 같이 엄청난 양의 데이터를 필요로 하고 만들어내는 서비스에서는 데이터들을 클라우드로 전송하여 소비자가 불편함을 느끼지 못하도록 빠르게 처리하는 것은 불가능에 가깝다. 그래서 우리는 Amazon Go 를 벤치마킹한 무인 마켓에 엣지 컴퓨팅을 도입하여 이를 구현한다. 그리고 구현한 시스템에서 엣지 컴퓨팅 외에 클라우드 컴퓨팅, 모바일 장치를 적용하여 처리할 때의 응답 시간을 분석하여 엣지 컴퓨팅의 높은 성능을 확인한다. 또한, 구현한 무인 마켓에서 데이터 전송의 효율성을 더욱 높이기 위해 카메라 단위와 매대 단위의 대역폭 할당 기법을 제안한다. 카메라 단위로는 모션 인식기술을 활용하여 움직임이 감지될 때만 각 이미지 프로세스에서 요구되는 고해상도로 송신하는 기법을 제안한다. 매대 단위로는 네트워크에서 수용 가능한 대역폭 임계치에 도달하지 못하게 하기 위해 매대 별 우선순위에 따른 대역폭 할당 스케줄링 기법을 제안한다. 그 결과로 평균 소모대역폭과 최대 소모대역폭을 비교하여 제안한 두 가지 기법이 기존의 방법에 비해 성능을 향상시키는 것을 보인다.

태양 에너지 수집형 IoT 엣지 컴퓨팅 환경에서 효율적인 오디오 딥러닝을 위한 데이터 전처리 기법 (Efficient Data Preprocessing Scheme for Audio Deep Learning in Solar-Powered IoT Edge Computing Environment)

  • 유연태;이창한;허석문;유나경;김기훈;이찬서;노동건
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.81-83
    • /
    • 2023
  • 태양 에너지 수집형 IoT 기기는 주기적으로 재충전되는 태양 에너지의 특성상, 에너지 소모를 최소화하기보다는 수집된 에너지를 최대한 유용하게 사용하는 것이 중요하다. 한편, 데이터 기밀성과 프라이버시, 응답속도, 비용 등의 이유로 클라우드가 아닌 데이터 소스 근처에서 머신러닝을 수행하는 엣지 AI에 대한 연구도 활발한데, 그 중 하나는 여러 IoT 장치들이 수집한 오디오 데이터를 활용하여, 다양한 AI 응용들을 IoT 엣지 컴퓨팅 환경에서 제공하는 것이다. 그러나, 이와 관련된 많은 연구에서, IoT 기기들은 에너지의 제약으로 인하여, 엣지 서버(IoT 서버)로의 센싱 데이터 전송만을 수행하고, 데이터 전처리를 포함한 모든 AI 과정은 엣지 서버에서 수행한다. 이 경우, 엣지 서버의 과부하 문제 뿐 아니라, 학습 및 추론에 불필요한 데이터까지도 서버에 그대로 전송되므로 네트워크 과부하 문제도 야기한다. 또한, 이를 해결하고자, 데이터 전처리 과정을 각 IoT 기기에 모두 맡긴다면, 기기의 에너지 부족으로 정전시간이 증가하는 또 다른 문제가 발생한다. 본 논문에서는 각 IoT 기기의 에너지 상태에 따라 데이터 전처리 여부를 결정함으로써, 기기들의 정전시간 증가 문제를 완화시키면서 서버 집중형 엣지 AI 환경의 문제들(엣지 서버 및 네트워크 과부하)을 완화시키고자 한다. 제안기법에서 IoT 장치는 기기가 기본적으로 동작하는 데 필요한 에너지 외의 여분의 에너지 양을 예측하고, 이 여분의 에너지가 있는 경우에만 이를 사용하여 기기에서 전처리 과정, 즉 수집 대상 소리 판별과 잡음 제거 과정을 거친 후 서버에 전송함으로써, IoT기기의 정전시간에 영향을 주지 않으면서, 에너지 적응적으로 데이터 전처리 위치(IoT기기 또는 엣지 서버)를 결정하여 수행한다.

이동 네트워크를 위한 가우스 마코프 모델에서 평균 이동각도 조절을 통한 균형잡힌 이동 패턴 생성 (Balanced mobility pattern generation using Random Mean Degree modification in Gauss Markov model for Mobile network)

  • 노재환;이병직;류정필;하남구;한기준
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (A)
    • /
    • pp.502-504
    • /
    • 2004
  • 이동성이 중요시되는 네트워크에서 특정 프로토콜의 성능 평가를 위해서는 노드의 이동패턴을 정확하게 표현할 수 있는 Mobility Model이 필요하다. 노드의 연속적인 이동패턴을 필요로 하는 Mobile Ad-hoc 네트워크를 위해선 Markov process 기반의 Gauss-Markov Mobility Model이 적절하다. 그러나 맵의 엣지 부근에서 노드 이동의 부적절한 처리로 인해, 기존의 Gauss-Markov Model은 편중된 이동 패턴을 야기한다. 본 논문은 엣지 부근의 평균 이동각도를 랜덤하게 조정함으로써 기존의 모델이 가진 문제를 해결하고, 시뮬레이션을 통해서 이를 검증한다.

  • PDF

EdgeCloudSim을 이용한 가상 이동 엣지 컴퓨팅 테스트베드 환경 개발 (Construction of a Virtual Mobile Edge Computing Testbed Environment Using the EdgeCloudSim)

  • 임헌국
    • 한국정보통신학회논문지
    • /
    • 제24권8호
    • /
    • pp.1102-1108
    • /
    • 2020
  • 이동 엣지 컴퓨팅은 중앙 집중식 데이터 처리가 아닌 데이터가 생성되는 네트워크의 에지와 가까운 곳에서 데이터를 처리하는 방식으로 클라우드 컴퓨팅의 단점을 보완하여 새로운 전기를 마련할 수 있는 기술이다. 데이터를 처리하고 연산하는 곳을 따로 먼 데이터 센터에 두는 것이 아닌, 이동 단말 장치들과 가까운 엣지에 컴퓨팅 능력을 부가하고 데이터 분석까지 가능하게 하여 저지연/초고속 컴퓨팅 서비스의 실현이 가능하게 하였다. 본 논문에서는 EdgeCloudSim 시뮬레이터를 이용해 클라우드와 엣지 노드가 협업하여 이동 단말의 컴퓨팅 작업 처리를 분업화 하는 가상의 이동 엣지 컴퓨팅 테스트베드 환경을 개발한다. 개발된 가상 이동 엣지 컴퓨팅 테스트베드 환경은 중앙 클라우드와 엣지 컴퓨팅 노드들 사이에서 이동 단말들의 컴퓨팅 작업 분배를 위한 오프로딩 기법들의 성능을 평가하고 분석한다. 가상 이동 엣지 컴퓨팅 테스트베드 환경 및 오프로딩 성능 평가를 제시함으로써 클라우드와 협업하는 이동 엣지 컴퓨팅 노드 구축을 준비하는 산업계 엔지니어들에게 하나의 사전 지식을 제공하고자 한다.

대규모 IoT 응용에 효과적인 주문형 하드웨어의 재구성을 위한 엣지 기반 변성적 IoT 디바이스 플랫폼 (Edge-Centric Metamorphic IoT Device Platform for Efficient On-Demand Hardware Replacement in Large-Scale IoT Applications)

  • 문현균;박대진
    • 한국정보통신학회논문지
    • /
    • 제24권12호
    • /
    • pp.1688-1696
    • /
    • 2020
  • 기존 클라우드 기반 Internet-of-Things(IoT) 시스템의 네트워크 정체와 서버 과부하로 인한 지연, 데이터 이동으로 인한 보안 및 프라이버시 이슈를 해결하기 위하여 엣지 기반의 IoT 시스템으로 IoT의 패러다임이 움직이고 있다. 하지만 엣지 기반의 IoT 시스템은 여러 제약으로 인하여 처리 성능과 동작의 유연성이 부족한 치명적인 문제점을 가지고 있다. 처리 성능을 개선하기 위하여 응용 특화 하드웨어를 엣지 디바이스에 구현할 수 있지만, 고정된 기능으로 인하여 특정 응용 이외에는 성능 향상을 보여줄 수 없다. 본 논문은 엣지 디바이스의 제한된 하드웨어 자원에서 다양한 응용 특화 하드웨어를 주문형 부분 재구성을 통해 사용할 수 있고, 이를 통해 엣지 디바이스의 처리 성능과 동작의 유연성을 증가시킬 수 있는 엣지 중심의 Metamorphic IoT(mIoT) 플랫폼을 소개한다. 실험 결과에 따르면, 재구성 알고리즘을 엣지에서 실행하는 엣지 중심의 mIoT 플랫폼은 재구성 알고리즘을 서버에서 실행하는 이전 연구에 비해 엣지의 서버 접근 횟수를 최대 82.2% 줄일 수 있었다.

RISC-V 가상플랫폼 기반 Yolov3-tiny 물체 탐지 딥러닝 모델 구현 (Implementation of Yolov3-tiny Object Detection Deep Learning Model over RISC-V Virtual Platform)

  • 김도영;설희관;임승호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.576-578
    • /
    • 2022
  • 딥러닝 기술의 발전으로 객체 인색, 영상 분석에 관한 성능이 비약적으로 발전하였다. 하지만 고성능 GPU 를 사용하는 컴퓨팅 환경이 아닌 제한적인 엣지 디바이스 환경에서의 영상 처리 및 딥러닝 모델의 적용을 위해서는 엣지 디바이스에서 딥러닝 모델 실행 환경 과 이에 대한 분석이 필요하다. 본 논문에서는 RISC-V ISA 를 구현한 RISC-V 가상 플랫폼에 yolov3-tiny 모델 기반 객체 인식 시스템을 소프트웨어 레벨에서 포팅하여 구현하고, 샘플 이미지에 대한 네트워크 딥러닝 연산 및 객체 인식 알고리즘을 적용하여 그 결과를 도출하여 보았다. 본 적용을 바탕으로 RISC-V 기반 임베디드 엣지 디바이스 플랫폼에서 딥러닝 네트워크 연산과 객체 인식 알고리즘의 수행에 대한 분석과 딥러닝 연산 최적화를 위한 알고리즘 연구에 활용할 수 있다.