• Title/Summary/Keyword: 엘보우 형상

Search Result 4, Processing Time 0.017 seconds

Effect of Diameter and Thickness on the Failure Location and Orientation of 90° Elbows Under In-plane Mode Cyclic Bending (In-plane 모드 반복굽힘 조건에서 90° 엘보우의 손상 위치와 방향에 미치는 직경과 두께 영향)

  • Jin Ney Hong;Jin Weon Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.2
    • /
    • pp.77-86
    • /
    • 2022
  • This study investigates the effect of the diameter and thickness on crack initiation location and orientation of 90° elbows under in-plane mode displacement-controlled cyclic bending loads. Finite element (FE) analysis of cyclic failure test is conducted for elbow specimens under in-plane mode displacement-controlled cyclic bending to identify the parameters affecting crack location and orientation. Furthermore, parametric FE analysis of the pipe elbows with various pipe nominal sizes and Schedules is performed, and the crack location and orientation from the results of FE analysis are determined. It is found that the crack location and orientation in the pipe elbows are determined mianly by the radius to thickness ratio of pipe elbows (Rm/t). It is also found that the presence of internal pressure slightly increases the value of Rm/t at which the failure mode changes.

Evaluation of Plastic Collapse Bending Load of Elbows with Thinning Area of Various Shapes (여러 형상의 감육부를 가진 엘보우의 소성붕괴 굽힘 하중의 평가)

  • Shin, Kyu-In;Lee, Sung-Ho;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.17-24
    • /
    • 2008
  • Elbows with various shapes of local wall thinning were numerically analyzed by finite element method to get load-displacement curves and the maximum loads. Results were compared with the experimental data obtained by another study. Elastic-plastic analysis were carried out under the combined loading conditions of internal pressure and in-plane bending loads. Two types of bending loads were considered such as elbow opening mode and elbow closing mode. Also, two different wall thinning geometries were modeled. Wall thinning area located extrados or intrados of elbow inner surface was considered. Longitudinal and circumferential lengths of the thinning area and the thinned thickness were varied for analysis. The results showed that the maximum load of the wall-thinned elbow decreased with increasing of the circumferential thinning length and the thinned thickness in both of extrados and intrados thinning locations in both loading types. The maximum load obtained by the analysis were in good agreement with the experimentally measured maximum load with the same wall thinning type and dimensions. This supports accuracy of the analysis results obtained in this study.

Effects of Curved Pipe Geometry and Inside Fluid Flow on the Vibrational Characteristics of Pipe Systems (배관의 형상 및 내부유체 유동이 배관계의 진동특성에 미치는 영향)

  • Choi, Myung-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.58-64
    • /
    • 2016
  • Vibrational characteristics of curved pipe structures are investigated with respect to the change of inside flow velocities. Based upon the Hamilton's principle, the equations of motions are derived, and the finite element equation is constructed to solve the frequency equation for curved pipe structures. When the initial tension is neglected in cured pipes, the natural frequencies are reduced as flow velocity increases, and the rapid decreases of the natural frequencies take place. However, when the initial tension is taken into account, the natural frequencies are not changed with the change of the flow velocity. In free vibrational simulation of pipe systems, it is necessary to calculate the initial force due to the velocity and the pressure of the fluid flow from the equilibrium. The force should be included in the equation of motion of the systems to get more accurate natural frequencies. The mechanical properties like stiffness or the location of pipe support need to be changed to avoid resonance. The natural frequencies are to be isolated from the frequency range of dominant vibration modes. The angles of elbows do not affect the change of the fundamental natural frequency, but affect the change of the third or higher natural frequencies.

Numerical Analysis of Gas Leakage and Diffusion Behavior in Underground Combined Cycle Power Plant (지하 복합발전 플랜트 내에서의 가스 누출 및 확산 거동에 관한 수치해석 연구)

  • Bang, Joo Won;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.118-124
    • /
    • 2017
  • In this study, a numerical simulation was performed using commercial code Fluent(v.17.1). The underground Combined Cycle Power Plant (CCPP) was simplified to analyze the methane gas leakage with the crack size and position. In addition, extensive numerical simulations were carried out for different crack sizes from 10 mm to 20 mm. The crack position is the gas leakage, which is assumed to be near the pipe elbow and the gas turbine. A total of 4 cases were compared and analyzed. To analyze the gas leakage, the concept of the Lower Flammable Limit (LFL) was applied. The leakage distance was defined in the longitudinal direction, and the transverse direction was estimated and quantitatively analyzed. As a result, the leakage distance in the longitudinal direction varies by 52.3 % depending on the crack size at the same crack position. Moreover, the maximum difference was 34.8 % according to the crack position when the crack sizes are identical. As jet flow impacts on the obstacle and changes its direction, the recirculation flows are formed. These results are expected to provide useful data to optimize the location and number of gas detections in confined spaces, such as underground CCPP.