• Title/Summary/Keyword: 엔진 배기

Search Result 795, Processing Time 0.026 seconds

Analysis Study of Liquid Apogee Engine Plume for Geostationary Satellite (정지궤도위성 궤도전이용 액체원지점엔진의 배기가스 해석 연구)

  • Lee, Chi Seong;Lee, Kyun Ho
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.8-15
    • /
    • 2018
  • The geostationary satellite uses a liquid apogee engine, to obtain a required velocity increment to enter a geostationary orbit. However, as the liquid apogee engine operates in the vacuum, a considerable disbursement of exhaust plume flow, from the liquid apogee engine can trigger a backflow. As this backflow may possibly collide with the satellite directly, it can cause adverse effects such as surface contamination, thermal load, and altitude disturbance, that can generate performance reduction of the geostationary satellite. So, this study investigated exhaust plume behavior of 400 N grade liquid apogee engine numerically. To analyze exhaust plume behavior in vacuum condition, the DSMC (Direct Simulation Monte Carlo) method based on Boltzmann equation is used. As a result, thermal fluid characteristics of exhaust plume such as temperature and number density, are observed.

Steady-state Performance Simulation and Operation Diagnosis of a 2-spool Separate Flow Type Turbofan Engine (2스풀 분리 배기 방식 엔진의 정상상태 성능모사 및 작동 진단)

  • Choo, KyoSeung;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.38-46
    • /
    • 2019
  • There is a growing interest in engine diagnostic technology for gas turbine engines. An engine simulation program, precisely simulating the engine performance, is required in order to apply it to the engine diagnosis technology for engine health monitoring. In particular, the simulation program can predict not only design point performance but also off-design point and partial load performance in accurate. So the engine simulation program for the 2-spool separate flow type turbofan engine was developed and the JT9D-7R4G engine of PW(Pratt & Whitney) was analyzed. The steady-sate performance analysis is conducted at both design and off-design points in flight path and the differences between analysis results of takeoff and cruise conditions are compared. The effect of Reynold's correction method was analyzed as a scaling method of the engine component performance. The simulation results was compared with NPSS.

A Simulation Study for Selecting Optimum Position of a Superheater in a Waste Heat Recovery System Integrated with a Large Gasoline Engine (대형 가솔린 엔진의 폐열 회수 장치인 슈퍼히터의 최적 위치선정을 위한 시뮬레이션 연구)

  • Kim, Se Lin;Choi, Kyung Wook;Lee, Ki Hyung;Kim, Ki Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.69-73
    • /
    • 2016
  • Recently, automotive engineers have paid much attention to waste heat recovery technology as a possible means to improve the thermal efficiency of an automotive engine. A large displacement gasoline engine is generally a V-type engine. It is not cost effective to install two superheaters at each exhaust manifold for the heat recovery purposes. A single superheater could be installed as close to the exhaust manifold as possible for the higher recovery efficiency; however, only half of exhaust gas can be used for heat recovery. On the contrary, the exhaust temperature is decreased for the case where the superheater is installed at a junction of two exhaust tail pipes. With the fact in mind, the optimum position of a single superheater was investigated using simulation models developed from a commercial software package (i.e. AMESim). It was found that installing the superheater near the exhaust manifold could recover 3.8 kW more from the engine exhaust despite utilizing only half of the exhaust mass flow. Based on this result, the optimum layout of an automotive waste heat recovery system was developed and proposed in this paper.

A Study on Exhaust Gas Recirculation of Homogeneous Charge Compression Ignition Engine (균질혼합압축점화기관의 배기가스재순환 특성에 관한 연구)

  • Han, Sung-Bin;Kim, Sung-Mo
    • Journal of Energy Engineering
    • /
    • v.18 no.3
    • /
    • pp.163-168
    • /
    • 2009
  • This paper describes the homogeneous charge compression ignition (HCCI) engine for a new concept. HCCI engines are being considered as a future alternative for diesel and gasoline engines. HCCI engines have the potential for high indicated thermal efficiency under part load and very low NOx emissions. The objective of this paper is to clear the effects of exhaust gas recirculation (EGR) rate on the HCCI. For this purpose, a 4-cylinder, compression ignition engine was converted into a HCCI engine This work has been run with propane and butane fuels at a constant speed.

A Numerical Analysis for Fuel Consumption by Improvement of Intake/Exhaust Valve Timing in a Common Rail Diesel Engine for a Generator (커먼레일 디젤엔진의 흡배기밸브 타이밍 개선을 통한 연비절감에 대한 수치해석적 연구)

  • Kim, Seung Chul;Kim, Chung Kyun
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.32-38
    • /
    • 2017
  • The common rail diesel engine used in this study uses mechanically driven camshaft for the operation of intake and exhaust valves, and the timing of valve opening and closing is fixed according to the operating conditions of the vehicle. However, the electric generator engine operates at a constant speed and partial load. Therefore, in order to optimize the design of common rail diesel engine for power generation, the characteristics of diesel combustion and emissions according to the change of valve timing were examined and calculated in terms of fuel economy. The valve timing of the diesel engine influenced the combustion characteristics by changing the intake and exhaust flow and it was considered that the fuel efficiency of the generator could be improved.

Trend for Performance Improvement of 2-Stroke Gasoline Engine (2-stroke 가솔린 기관 성능 향상을 위한 추세)

  • 김승수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.1-4
    • /
    • 1987
  • 내연기관 연구에 전념하는 모든 사람들의 한결같은 3대 염원은 연비향상, 비출력증대 및 유해 배기가스 성분 감소이다. 이중 비과급 가솔린 기관의 경우 비출력 증대를 위한 4-stroke cycle 엔진에서의 여구는 현지까지 헤아릴 수 없이 많은 연구가 진행되어 발전의 한계에 도달한 느낌 이다. 따라서 이의 실질적인 증대는 시각을 달리하여 2-stroke cycle로의 전환으로서만 가능하리 라 본다. 2-stroke 엔진은 원래 이목적으로 고안된 것이라는 것은 주지의 사실이다. 그러나 이 장치가 비출력면에서 효과적인 가솔린엔진의 경우에서도 현재까지 별로 각광을 받지 못한 것은 다음과 같은 몇가지 두드러진 이유 때문이라고 본다. 첫째 흡입연료의 일부가 소기(scavenging) 과정에서 배기공으로 곧바로 유출됨으로 배기 공해성분을 증가시키고 연료손실에 따른 연비저감 을 초래하는 것이다. 둘째로 crankcase 소기를 이용하는 소형가솔린 2-stroke 엔진에서는 새 공 기의 흡입이 충분치 못하여 일방적으로 높지 않은 소기효율을 고려한 최종 흡입 체적효율은 상당 히 낮아지게 됨으로써 목적하는바의 비출력 증대의 득을 별로 얻지 못함은 물론 잔류가스율이 높아 저부하, 저속도에서 엔진의 구동이 손조롭지 못ㅎ하고 시동이 어려워지는 특성을 나타나게 된다. 따라서 이러한 바람직하지 못한 결과를 감수할 수 있는 경우에는 소형원동기에 주로 2-stroke 가솔린 엔진이 이용되어 왔다. 요사이 이러한 약점들을 타개할 수 있는 고안들이 미국 SAE지에 소개되어 관심을 끌고 있어 이에 대해 요저먹으로 소개하고자 한다.

  • PDF

Fundamental design consideration for optimum performance in altitude test cell facility (고공시험설비의 전체 사양을 결정하는 시험부를 중심으로 설비개발시의 주요 고려사항)

  • Choi, Kyoung-Ho;Lee, Jung-Hyung;Owino, George;Lee, Dae-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.411-415
    • /
    • 2008
  • This paper presents on design factor considered in an altitude test cell facility to determine the best sizing to optimize exhaust diffuser pressure recovery and the exact cooling load required to be supplied under transient operation. Engine simulation was performed to analyse the exhaust gas temperature, exit mass flow rate, specific fuel consumption and exhaust velocity helpful in determining secondary mass air flow and the mixed air temperature entering the ejector. based on this, the amount of cooling load was deduced. It was found that improved pressure recovery reduces operational cost(air supply facility, cooling water).

  • PDF

A Study on Effects of Tuning Intake and Exhaust Systems upon Engine Performance in a Driving Gasoline Car (운행 가솔린자동차 엔진성능에 미치는 튜닝 흡기 및 배기 시스템의 효과에 관한 연구)

  • Bae, Myung-whan;Ku, Young Jin;Park, Hui-seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.775-784
    • /
    • 2017
  • The purpose of this study was to analyse the basic data of the engine tuning inspection by confirming the working possibility of effective engine tuning and identifying the characteristics of tuned engine that are no problem with the safety operation and environment in a driving gasoline car. The effects of tuned engine on the characteristics of air/fuel ratio and performance at a wide range of engine speeds were experimentally investigated by the actual driving car with a four-cycle, four-cylinder DOHC, turbo-intercooler, water-cooled gasoline engine operating under four types of non-tuning, and tuning 2-1, 2-2 and 2-3. The tuned parts of engine in a driving gasoline car include the intake manifold, intake pipe, air filter, exhaust manifold, exhaust pipe and silencer. In this experiment, the air-fuel ratio and torque of both non-tuned and tuned engines that one person took on board in the car with a five-speed automatic transmission were measured by the chassis dynamometer(Dynojet 224xLC). It was found that the maximum torque of tuned engine in a driving gasoline car was increased by 103.68% on average, while the maximum output was increased by 119.68% on average in comparison to the non-tuned engine.

Emission Prediction from Naval Ship Main Propulsive Diesel Engine under Steady Navigation (정속항해 시 함정 주 추진 디젤엔진의 배기가스 배출량 예측)

  • Lee, Hyung-Min;Park, Rang-Eun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.788-793
    • /
    • 2012
  • This study was focused on the estimations of air pollutants, such as PM(Particulate matters), SOx(Sulfur Oxides), $CO_2$(Carbon diOxides) and NOx(Nitrogen Oxides), from a diesel propulsion engine installed on a naval vessel. Legislative and regulatory actions for exhaust emissions from ships are being strengthened in international communities and national governments to protect human health and the environment. In this context, various technologies have been developed from all of the nations of the world to meet strict standards. These regulations are based on commercial ship applications and according to size, but are not suitable for military naval vessels, which have much different engine operating conditions and hull architectures. Additionally, there is no international emission control system for military ships. Emission factors have been updated for commercial ship types from work at various research institutes; however, it is difficult to develop emission factors for military vessels because of their characteristics. In this paper, exhaust emissions from diesel engines installed on naval vessels under steady navigation condition were estimated with emission inventory methodology applied to ocean going vessels using fuel-based methods and fuel sulfur content analysis.

Investigation of Emission Gas by using the Intake Manifold Gasket Blade (흡기 매니폴드 가스켓 블레이드 적용에 따른 배출가스 고찰)

  • Lee, Minjung;Kim, Taejung;Shin, Yunchan;Cho, Honghuyn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.54-61
    • /
    • 2018
  • Incomplete combustion in automotive engines is a major cause of harmful exhaust gases. In this study, to prevent incomplete combustion and reduce exhaust gas emissions, a gasket blade for increasing the air velocity was applied to the intake manifold, and the change in exhaust gas was investigated theoretically and experimentally. First, simulation analysis for flow according to the number and angle of the gasket blade was performed using a 3D flow analysis program. As an analysis result, the internal average velocity of the gasket blade was optimum at 6-blade with an angle of $30^{\circ}$. Based on the simulation results, experiments were conducted to verify the effects of the gasket blades on the exhaust gas in a non-load engine simulation system. As the engine speed was increased from 2000 to 4000 rpm, exhaust gases of HC, CO, and NOx decreased by 23.4%, 16.5%, and 3.8%, respectively, and the emission decreasing effect was reduced.