• Title/Summary/Keyword: 엔진성능시험장치

Search Result 82, Processing Time 0.025 seconds

소형무인기용 왕복엔진 성능시험장치 구성

  • Chang, Sung-Ho
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.186-198
    • /
    • 2003
  • Small sized engine test stand has been built up and modified to measure the engine performance for 15g class small UAV propulsion systems. An engine performance standard test stand was developed in order to validate the prediction performance and to shoot trobles. The performance data were measured and analyzed for the newly developed gasoline engine.

  • PDF

Development of a Small Jet Engine Performance Test Device by Applying the Real-time Gas Turbine Engine Simulator (실시간 가스터빈 엔진 시뮬레이터를 적용한 소형 제트엔진 성능시험장치 개발)

  • Kho, Seonghee;Kong, Changduk;Ki, Jayoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.6
    • /
    • pp.42-49
    • /
    • 2014
  • Test device using virtual engine simulator can help reduce the number of engine tests through tests similar to the actual engine tests and repeat the test under the same condition, and thus reduce the engine maintenance and operating costs. Also, as it is possible to easily implement extreme conditions in which it is hard to conduct actual tests, it can prevent engine damages that may happen during the actual engine test under such conditions. In this study, an upgraded small jet engine performance test device was developed that can conduct both real and virtual engine test by applying real-time engine model to the existing micro jet engine performance test device that was previously developed by authors. This newly developed multi-purpose small jet engine performance test device is expected to be used for various educational and research purposes.

A Study on the Static Performance Test of a Reciprocating Engine for Small Aircraft (소형항공기용 왕복엔진의 정적 성능시험 연구)

  • 김근배;안석민;김근택;최선우
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.53-60
    • /
    • 2003
  • A test stand was developed to measure static performance of a reciprocating engine on the ground, related to the small aircraft being developed by KARI. The test stand consists of an apparatus to install and operate a pusher-type propulsion system and a data acquisition system to process many performance parameters including engine torque and propeller thrust as well as monitoring of the engine operations. First, the performance data from the basic operation tests were compared with the original engine data so the capacity of the test stand was verified. Engine performance tests were carried out with various test conditions through three stages, and it was measured and analyzed that the manifold pressure, the torque, and the back pressure of the engine, and the static thrust of the propeller.

Development of Test Stand for Altitude Engine Test of Reciprocating Engine (왕복동 엔진의 고도성능시험을 위한 시험장치 개발)

  • Lee, KyungJae;Yang, InYoung;Kim, ChunTaek;Kim, DongSik;Baek, Cheulwoo;Yang, GyaeByung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.563-571
    • /
    • 2017
  • Test stand for altitude engine test of reciprocating engine was designed, manufactured and validated by preliminary test and simple calculation. These test stand designed to interface with Altitude turbo-shaft engine test facility of Korea Aerospace Research Institute. Many limiting condition for altitude test of reciprocating engine are assumed and test stand was developed to satisfy those limits. Test stand design specially focused on a altitude, Mach number and fuel temperature control for reciprocating engine altitude test with smaller air and fuel flow than turbo-shaft engine.

  • PDF

Development of Combustion Test Facility for Liquid Rocket Engine (액체로켓엔진 성능 및 냉각특성 연구를 위한 연소시험장치 개발)

  • Kim, Dong-Hwan;Lee, Seong-Ung;Yu, Byeong-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.106-111
    • /
    • 2006
  • Combustion test facility for liquid rocket engine using kerosene and liquid oxygen has been developed for the purpose of cooling and performance study. Test engine of thrust under 1.0 KN can be evaluated, and the real combustion test ensures a good operation of the combustion test facility. Combustion test facility will be modified to supply natural gas and liquefied natural gas as fuel and to give a regenerative cooling test.

Development of Test Stand for Altitude Test of Reciprocating Engine (왕복동 엔진의 고도성능시험을 위한 시험장치 개발)

  • Lee, Kyung-Jae;Yang, Inyoung;Kim, Chun Taek;Kim, Dongsik;Baek, Cheulwoo;Yang, Gyaebyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.119-127
    • /
    • 2018
  • A test stand for an altitude test of reciprocating engine was designed, manufactured and validated by preliminary tests and simple calculations. The test stand was designed to interface with the altitude turbo-shaft engine test facility of Korea Aerospace Research Institute. Many limiting conditions for altitude test of reciprocating engine were assumed and the test stand was developed to satisfy these limitations. The test stand design was focused especially on the altitude, Mach number and fuel temperature control for reciprocating engine altitude tests with smaller air and fuel flow than those of turbo shaft engines.

Development of Combustion Test Facility for Liquid Locket Engine (액체로켓엔진 성능 및 냉각특성 연구를 위한 연소시험 장치 개발)

  • Lee Sung-Woong;Kim Dong-Hwan;Kim Young-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.189-192
    • /
    • 2004
  • Test Facility for hot firing test of small size liquid rocket engine has been developed to research the cooing characteristics of kerosene for cylinder part especially. Propellants for the tests are kerosene and liquid oxygen as fuel and oxidizer respectively and they are fed by gaseous nitrogen. The engine components used hot firing test except for cylinder are cooled by tap-water. Valves for supply of propellants and coolants are controlled by pneumatically. System control and data recording are conducted automatically.

  • PDF

Development of the Performance Test Cell Using the Small Gas Turbine Engine of 80 lbf-Thrust (80lbf급 소형 가스터빈 엔진의 성능 시험장치 개발)

  • Jin, Hak-Su;Kho, Seong-Hee;Ki, Ja-Young;Yong, Seong-Ju;Kang, Myoung-Cheol;Lee, Eun-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.495-498
    • /
    • 2010
  • This test cell is developed to the institutes or laboratories research and study gas turbine engine for academic purpose with this test data to provide the fundamentals of operational mechanism and structural configuration, and further to verify thermodynamic calculation The test cell is installed to monitor and compare real-time data with reference engine model performance simulation data. using by NI DAQ(Data acquisition)device and LabVIEW program based on 80 lbf-micro turbojet engine.

  • PDF

Development of the Educational Micro Gas Turbine Engine Performance Test System (교육용 마이크로 가스터빈 엔진 성능 시험장치 개발)

  • Kho, Seong-Hee;Ki, Ja-Young;Park, Mi-Young;Kong, Chang-Duk;Lee, Kyung-Jae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.31-35
    • /
    • 2008
  • This test cell is developed to provide the fundamentals of operational mechanism and structural configuration, and further to verify thermodynamic calculation with this test data to the institutes or laboratories research and study gas turbine engine for academic purpose. The test cell is installed to monitor and collect real-time data as to temperature, pressure, thrust, fuel flow, and air flow etc. using by NI DAQ(Data acquisition)device and LabVIEW program based on 30lbf-micro turbojet engine.

  • PDF

Development of the Condition Monitoring Test Cell Using the Micro Gas Turbine Engine (초소형 가스터빈을 이용한 상태감시 시험장치 개발)

  • Kho, Seong-Hee;Ki, Ja-Young;Koo, Young-Ju;Kong, Chang-Duk;Lee, Eun-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.345-349
    • /
    • 2009
  • This test cell is developed to the institutes or laboratories research and study gas turbine engine for academic purpose with this test data to provide the fundamentals of operational mechanism and structural configuration, and further to verify thermodynamic calculation The test cell is installed to monitor and compare real-time data with reference engine model performance simulation data. using by NI DAQ(Data acquisition)device and LabVIEW program based on 30lbf-micro turbojet engine.

  • PDF