• Title/Summary/Keyword: 엔진대상시험

Search Result 58, Processing Time 0.024 seconds

Technical Papers : Performance Test of a Two Stage Axial Compressor of a Turboshaft Engine for Helicopters (기술논문 : 헬리콥터용 터보샤프트엔진 2 단 축류압축기 성능시험)

  • Kim, Chun-Taek;Kim, Jin-Han;Yang, Su-Seok;Lee, Dae-Seong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.139-145
    • /
    • 2002
  • 이륙중량 4000kg, 10-12인승급 다목적 헬리콥터에 적용가능한 엔진 개량 개발을 목표로 기존 헬리콥터 엔진을 개량대상으로 선정하고 이러한 다목적 헬기의 요구조건에 부합하기 위해 기존 엔진의 요소부품을 재설계하였다. 첫 단계로 최소변경으로 720 hp에서 840 hp로 출력을 증강시키기 위하여 2단 축류압축기의 기존 입구 유도익을 제거하고 익현의 길이를 증가하여 유량 및 압축비를 증가시킴으로써 출력 증강을 얻도록 재설계를 수행하였다. 이러한 2단 축류압축기의 성능을 검증하기 위하여 두 번째 단 단독시험 및 전체 2단에 대한 성능시험이 수행되었으며 첫 번째 단의 성능은 이 결과로부터 도출되었다. 성능시험결과 전체 2단 압축기는 유량 3.088 kg/s에서 압력비 2.14, 단열효율 88%의 성능을 갖는 것으로 나타났으며 압축기 출구의 압력 및 온도 분포를 레이크를 이용하여 측정하였다.

Development of the Performance Test Cell Using the Small Gas Turbine Engine of 80 lbf-Thrust (80lbf급 소형 가스터빈 엔진의 성능 시험장치 개발)

  • Jin, Hak-Su;Kho, Seong-Hee;Ki, Ja-Young;Yong, Seong-Ju;Kang, Myoung-Cheol;Lee, Eun-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.495-498
    • /
    • 2010
  • This test cell is developed to the institutes or laboratories research and study gas turbine engine for academic purpose with this test data to provide the fundamentals of operational mechanism and structural configuration, and further to verify thermodynamic calculation The test cell is installed to monitor and compare real-time data with reference engine model performance simulation data. using by NI DAQ(Data acquisition)device and LabVIEW program based on 80 lbf-micro turbojet engine.

  • PDF

Study of Engine Control/Performance Modeling for Helicopter Simulator (헬리콥터 시뮬레이터용 엔진 제어 및 성능 모델링 기법 연구)

  • Jun, Hyang-Sig;Jeon, Dae-Keun;Choi, Hyoung-Sik;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.183-188
    • /
    • 2008
  • Engine control/performance model for helicopter simulator is one of the most important models which affect flight performance and handling quality. It is typical to develop the model based on the raw data and models from the engine designers/manufacturers. The approaches in this study were to develop the basic model based on the available resources and to tune and verify it based on the ground/flight test results. The maintenance manuals of TB3-117 which is installed in KA-32T were reviewed and the components to be simulated for the engine control model were categorized and modeled. Piece-wise linear modeling method was used for the engine performance model. The engine performance data in the engine maintenance manuals were incorporated into the engine steady state performance tables, which were incorporated with the transfer functions for the dynamic performance. Engine control/performance model was compared and tuned with the ground/flight test results. It was verified that the fidelity of the model was within the tolerances in FAA AC120-63.

  • PDF

Study of Engine Control/Performance Modeling for Helicopter Simulator (헬리콥터 시뮬레이터용 엔진 제어 및 성능 모델링 기법 연구)

  • Jun, Hyang-Sig;Jeon, Dae-Keun;Choi, Hyoung-Sik;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2239-2246
    • /
    • 2008
  • Engine control/performance model for helicopter simulator if one of the most important models which affect flight performance and handling quality. It is typical to develop the model based on the raw data and models from the engine designers/manufacturers. The approaches in this study were to develop the basic model bated on the available resources and to tune and verify it based on the ground/flight test results. The maintenance manuals of TB3-117 which is installed in KA-327 were reviewed and the components to be simulated for the engine control model were categorized and modeled. Piece-wise linear modeling method was used for the engine performance model. The engine performance data in the engine maintenance manuals were incorporated into the engine steady state performance tablet, which were incorporated with the transfer functions for the dynamic performance. Engine control/performance model was compared and tuned with the round/flight test results. It was verified that the fidelity of the model was within the tolerances in FAA AC120-63.

Development of the Condition Monitoring Test Cell Using the Micro Gas Turbine Engine (초소형 가스터빈을 이용한 상태감시 시험장치 개발)

  • Kho, Seong-Hee;Ki, Ja-Young;Koo, Young-Ju;Kong, Chang-Duk;Lee, Eun-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.345-349
    • /
    • 2009
  • This test cell is developed to the institutes or laboratories research and study gas turbine engine for academic purpose with this test data to provide the fundamentals of operational mechanism and structural configuration, and further to verify thermodynamic calculation The test cell is installed to monitor and compare real-time data with reference engine model performance simulation data. using by NI DAQ(Data acquisition)device and LabVIEW program based on 30lbf-micro turbojet engine.

  • PDF

Soot dispersancy of engine oils (엔진유의 수트 분산 특성(제2보))

  • 문우식;권완섭;이종훈;오대윤;최재권
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.247-252
    • /
    • 1997
  • 최근 자동차 배기 가스에 대한 규제가 강화되고 있고, 특히 자동차 매연중 대젤 차량에 대한 배기 가스 저감이 관심의 대상이 되고 있다. 이러한 배기 가스 규제에 대응하기 위하여 엔진의 여러 부위에 대한 설계변경이 이루어지고 있다. 설계변경의 대표적인 예로는 피스톤 탑 링(top piston ring)의 위치를 현재보다 위로 하고 피스톤과 라이너 사이의 간극을 좁게하여 크레비스 볼륨을 줄이거나, 연로 분사 시기 지연, 배기가스재순환(EGR, Exhaust Gas Recirculation)장치 등이 있다. 본 보고에서는 모사 실험 결과에 추가하여 엔진 시험을 수행함으로써 엔진유의 분산 특성및 산화안정성에 미치는 기유와 첨가제의 영향을 조사하였다.

  • PDF

Study of Gas-turbine Cranking Model using the Coast Down Experimental Results (Coast Down 시험데이터를 이용한 가스터빈엔진 시동모델 연구)

  • Kim, Sun Je;Kim, Yeong Ryeon;Min, Seongki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.18-24
    • /
    • 2017
  • Appropriate selection of the starter is essential for successful starting of the gas-turbine engine. Thus, aerodynamic drag during starting phase should be analyzed to assess the feasibility of the starter. In this paper, aerodynamic drag is modeled based on the speed profile from the engine coast down test, and it is scaled with respect to the target engine by comparing the compressor load. Afterward, the govern equation of the starting phase is developed with the torque model of the starter, and the design scheme to select the feasible starter will be finally suggested. The proposed model of starting phase will be useful to perform a preliminary design of the starting system of the gas-turbine engine.

Dynamic Characteristics Prediction of Liquid Rocket Engine for the Transient Sequence Part-I : Engine Component Modelling and Validation (액체로켓엔진 천이 동특성 예측 Part-I : 주요 구성품 동특성 모델링 및 검증)

  • Kim, Hyung-Min;Lee, Kuk-Jin;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.54-60
    • /
    • 2010
  • 액체로켓엔진 시스템의 시동 및 정지 또는 추력 제어와 같은 천이 작동시 동특성을 예측하기 위한 선행 연구로서 추진제 공급 시스템의 구성품에 대한 동특성 모델링을 수행하였다. 연료 공급계통과 산화제 공급 계통의 구성품들은 재생냉각채널을 제외하고 같은 것으로 가정하였다. 동특성 모델링의 대상 구성품은 펌프, 관로, 오리피스, 제어 벨브, 재생냉각채널, 인젝터 등이며 실제 엔진 시스템의 축소모형에 대한 수력시험을 통해 각 구성품의 동특성 모델링을 검증하였다.

  • PDF

Operational Control Logic of Series Hybrid Power System for the Unmanned Aerial Vehicle (무인기용 직렬 하이브리드 동력시스템 운용 제어로직)

  • Lee, Bohwa;Park, Poomin;Kim, Keunbae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.68-76
    • /
    • 2021
  • The series hybrid system targeted in this study uses a reciprocating engine, a generator, and a battery as a main power source for the unmanned aerial vehicle. The generator is directly connected to the drive shaft of the reciprocating engine, and the operating characteristics of the reciprocating engine-generator set were confirmed through ground integration tests. In this study, based on the test results, a control logic is proposed an efficient use of the reciprocating engine-generator power and battery power. Also, the power variations of the reciprocating engine-generator and battery according to the logic were verified through simulation. As a result, it was confirmed that the engine-generator power supplied the power required for propulsion along with the battery power by the proposed control logic.

Modeling of Liquid Rocket Engine Components Dynamics at Transient Operation (액체로켓엔진 천이작동 예측을 위한 구성품 동특성 모델링)

  • Kim, Hyung-Min;Lee, Kuk-Jin;Yoon, Woong-Sup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.35-44
    • /
    • 2011
  • Mathematical modelling for liquid rocket engine(LRE) main components were conducted to predict the dynamic characteristics when the LRE operates at the transient condition, which include engine start up, shut down, or thrust control. Propellant feeding system is composed of fuel and oxidizer feeding components except for regenerative cooling channel for the fuel circuit. Components modeling of pump, pipe, orifice, control valve, regenerative cooling channel and injector was serially made. Hydraulic tests of scale down component were made in order to validate modelling components. The mathematical models of engine components were integrated into LRE transient simulation program in concomitant with experimental validation.