• Title/Summary/Keyword: 에폭시 섬유

Search Result 317, Processing Time 0.021 seconds

DGEBA-MDA-SN-Hydroxyl Group System and Composites : 2. Fracture Energy of Fiber Reinforced Composites (DGEBA-MDA-SN-Hydroxyl Group System의 합성 및 복합재료 제조 : 2. 섬유강화 복합재료의 파괴에너지)

  • Lee, Jae-Young;Shim, Mi-Ja;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.737-742
    • /
    • 1994
  • The fracture energy of glass fiber/carbon fiber/epoxy resin hybrid composite system was investigated in the aspect of fracture mechanism. Epoxy resin matrix was DGEBA-MDA-SN-HQ system. On the interface of glass fiber and matrix, post debone friction energy provided a major contribution to the fracture energy, and debonding energy and pull-out energy were of the similar value. In the case of fracture on the interface of carbon fiber and matrix, pull-out energy was the major contributor.

  • PDF

Interfacial Damage Sensing and Evaluation of Carbon and SiC Fibers/Epoxy Composites with Fiber-Embedded Angle using Electro-Micromechanical Technique (Electro-Micromechanical시험법을 이용한 섬유 함침 각에 따른 탄소와 SiC 섬유강화 에폭시 복합재료의 계면 손상 감지능 및 평가)

  • Joung-Man Park;Sang-Il Lee;Jin-Woo Kong;Tae-Wook Kim
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.68-73
    • /
    • 2003
  • Interfacial properties and electrical sensing fer fiber fracture in carbon and SiC fibers/epoxy composites were investigated by the electrical resistance measurement and fragmentation test. As fiber-embedded angle increased, the interfacial shear strength (IFSS) of two-type fiber composites decreased, and the elapsed time takes long until the infinity in electrical resistivity. The initial slope of electrical resistivity increased rapidly to the infinity at higher angle, whereas electrical resistivity increased gradually at small angle. Furthermore, both fiber composites with small embedded angle showed a fully-developed stress whitening pattern, whereas both composites with higher embedded angle exhibited a less developed stress whitening pattern. As embedded angle decreased, the gap between the fragments increased and the debonded length was wider for both fiber composites. Electro-micromechanical technique could be a feasible nondestructive evaluation to measure interfacial sensing properties depending on the fiber-embedded angle in conductive fiber reinforced composites.

Separation of Non-Metallic Components in Waste Printed Circuit Boards (WPCBs) using Organic Solvent and Potassium Phosphate Solution (유기용매와 인산칼륨 용액을 이용한 폐 인쇄회로기판에서 비금속성분의 분리)

  • Lee, Jae-Cheon;Jeong, Jin Ki;Kim, Jong Seok
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.367-371
    • /
    • 2012
  • Waste printed circuit boards (WPCBs) contain valuable metals such as Cu, Ni, Au, Ag, and Pd. For an effective recycling of WPCBs, it is essential to recover the valuable metals. In recent years, recycling processes have come to be necessary for separating noble metals from WPCBs due to an increasing amount of electronic device wastes. However, it is well known that glass reinforced epoxy resins in the WPCBs are difficult materials to separate into elemental components, namely metals, glass fibers and epoxy resins in the chemical recycling process. $K_3PO_4$ as a catalyst in dimethylformamide (DMF) and N-Methyl-2-pyrrolidone (NMP) was used to depolymerize epoxy resins for recovering metallic and non-metallic components from WPCBs. Reactions of WPCBs were carried out at temperatures $160{\sim}200^{\circ}C$ for 2~12 h. The recycled glass fiber from WPCBs was analyzed by thermogravimetric analyzer (TGA) and evaluated the degree of solubility of the epoxy resin for separation efficiencies of the WPCBs.

Study on the Improvement of Epoxy Property for Aluminum Conductor Composite Core (복합재료 중심인장선용 에폭시 물성 개선 연구)

  • Heo, Seok-Bong;Kang, Junyoung;Youn, Young-Gil;Goh, Munju;Kim, Nam Hoon
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.349-354
    • /
    • 2019
  • The Aluminum conductor composite core consists of fast-curing thermosetting epoxy used as reinforcements and carbon fiber and glass fiber used as matrix. In this study, we have investigated fast curing epoxy cured products used for composite core(Aluminum Conductor Composite Core, ACCC). Tetrafunctional epoxy(PA 806) was used as a multifunctional epoxy, along with two kinds of curing agents, MNAn(5-Methyl-5-norbornene-2,3-dicarboxylic anhydride) and HHPA(Hexahydrophthalic Anhydride), to make an epoxy cured product and their properties were evaluated. Optimum conditions are confirmed by varying the content of curing accelerator in the selected epoxy and curing agent.

Evaluation of Wettability and Interfacial Property of Glass Fiber Reinforced Composite with Different Glass Fiber Conditions via Capillary Effect (Capillary 특성을 활용한 섬유 조건에 따른 유리섬유강화 복합재료의 함침성 및 계면강도 평가)

  • Kim, Jong-Hyun;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.305-310
    • /
    • 2021
  • Mechanical properties of fiber reinforced composites were affected to fiber volume fractions (FVF) and interfacial property by sizing agent conditions. An optimum interface can relieve stress concentration by transferring the mechanical stress from the matrix resin to the reinforcements effectively, and thus can result in the performance of the composites. The interfacial properties and wettability between the epoxy resin and glass fiber (GF) were evaluated for different sizing agent conditions and FVFs. The surface energies of epoxy resin and different sizing agent treated GFs were calculated using dynamic and static contact angle measurements. The work of adhesion, Wa was calculated by using surface energies of epoxy matrix and GFs. The wettability was evaluated via the GF tow capillary test. The interfacial shear strength (IFSS) was evaluated by microdroplet pull-out test. Finally, the optimized GFRP manufacturing conditions could be obtained by using wettability and interfacial property.

The Effect of Interfacial Properties and RTM Process of Composites with Different Cross-linking Density by Molecular Weight of Hardener (경화제의 분자량에 의한 가교밀도 차이에 따른 복합재료의 계면 물성 및 RTM 성형성에 미치는 영향)

  • Park, Ha-Seung;Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.169-174
    • /
    • 2017
  • Demand of glass fiber reinforced composites (GFRC) increased with developing aircraft and defense industries using resin transfer molding (RTM) process to produce complex product. In this research, wetting, interfacial, and mechanical properties were evaluated with different Cross-linking Density by Molecular Weight of Hardener. Epoxy resin as matrices was used bisphenol-A type and amine-type hardeners with different molecular weight. Specimens were manufactured via RTM and wetting property of resin and glass fiber (GF) mat was evaluated to viscosity of epoxy and injection time of epoxy matrix. Mechanical property of GFRC was determined via flexural strength whereas interfacial properties were determined by interlaminar shear strength (ILSS) and interfacial shear strength (IFSS). The difference in mechanical property depends upon the fiber weight fraction (wt %) of GFRC by RTM as well as the different Molecular Weight of Hardener.

Interfacial Evaluation of Single Ramie and Kenaf Fibers/Epoxy Composites Using Micromechanical Technique (Micromechanical 시험법을 이용한 Kenaf 및 Ramie 섬유 강화 에폭시 복합재료의 계면물성 평가)

  • Park, Joung-Man;Tran, Quang Son;Jung, Jin-Gyu;Kim, Sung-Ju;Hwang, Byung-Sun
    • Journal of Adhesion and Interface
    • /
    • v.6 no.2
    • /
    • pp.13-20
    • /
    • 2005
  • Interfacial shear strength (IFSS) of environmentally friendly natural fiber reinforced polymer composites plays a very important role in controlling the overall mechanical performance. The IFSS of various Ramie and Kenaf fibers/epoxy composites was evaluated using the combination of micromechanical test and nondestructive acoustic emission (AE) to find out optimal conditions for desirable final performance. Dynamic contact angle was measured for Ramie and Kenaf fibers and correlated the wettability properties with interfacial adhesion. Mechanical properties of Ramie and Kenaf fibers were investigated using single-fiber tensile test and analyzed statistically by both uni-and bimodal Weibull distributions. An influence of clamping effect on a real elongation for both Ramie and Kenaf fibers were evaluated as well. Two different microfailure modes, axial debonding and fibril fracture coming from fiber bundles and single fiber composites (SFC) were observed under tension and compression.

  • PDF

Influence of Fiber Array Direction on Mechanical Interfacial Properties of Basalt Fiber-reinforced Composites (현무암섬유 섬유 배향에 따른 현무암섬유 강화 복합재료의 기계적 계면특성 영향)

  • Kim, Myung-Seok;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.219-224
    • /
    • 2015
  • In this work, the effect of fiber array direction including $0^{\circ}$, $0^{\circ}/90^{\circ}$, $0^{\circ}/45^{\circ}/-45^{\circ}$ was investigated for mechanical properties of basalt fiber-reinforced composites. Mechanical properties of the composites were studied using interlaminar shear strength (ILSS) and critical stress intensity factor ($K_{IC}$) measurements. The cross-section morphologies of basalt fiber-reinforced epoxy composites were observed by scanning electron microscope (SEM). Also, the surface properties of basalt fibers were determined by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). From the results, it was observed that acid treated basalt fiber-reinforced composites showed significantly higher mechanical interfacial properties than those of untreated basalt fiber-reinforced composites. These results indicated that the hydroxyl functional groups of basalt fibers lead to the improvement of the mechanical interfacial properties of basalt fibers/epoxy composites in the all array direction.

Constitutive Equations of 3D Circular Braided Glass Fiber Reinforced Composites (3차원 원형 브레이드 유리섬유 강화 복합재료의 구성방정식)

  • 신헌정;정관수;강태진;윤재륜
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.107-110
    • /
    • 2003
  • 본 연구에서는 3차원 브레이딩 기계를 이용하여 제작된 6 layer의 3차원 원형 형태로 브레이드된 유리 섬유 강화 복합재료의 프리프레그를 이용하여 에폭시 수지를 모체로 하는 RTM(Resin Transfer Molding) 공정을 통해 직교 이방성 복합재료를 제작하였다. 또한 탄성한계 내에서의 구성방정식을 얻기 위해 unit cell 모델링을 통해 복합재료의 기하를 모사하고 method of cells 이론과 homogenization technique를 이용하여 복합재료의 구성방정식을 나타내는 수치해석 코드를 개발하였다. (중략)

  • PDF