• Title/Summary/Keyword: 에틸실리케이트

Search Result 20, Processing Time 0.027 seconds

Quantitative Evaluation for Effectiveness of Consolidation Treatment by using the Ethylsilicate for the Namsan Granite in Gyeongju (경주 남산 화강암을 대상으로 에틸실리케이트를 이용한 강화 처리에 대한 정량적 평가)

  • Han, Min-Su;Lee, Jang-Jon;Jun, Byung-Kyu;Song, Chi-Young;Kim, Sa-Dug
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.183-192
    • /
    • 2008
  • Stone cultural heritages in Korea are mostly situated out door without any notable protection thus there are severe damage from chemical and biological weathering. This in turn, causes deformation and structural damage. To counter act this problem and to increase durability, various kinds of conservation materials are used in the conservation and restoration treatment. However, there are not many practical and technological experiment done on this subject. This paper attempts quantitative evaluation of effectiveness of ethylsilicate based resin for Namsan granite in Gyeongju. When two different materials with different ethylsilicate concentration were compared, the result indicated decrease of absorption and porosity with increase of ultrasonic velocities, uniaxial compressive strength, elastic constant, tensile strength and Poisson's ratio. In addition, comparison of physical characteristic of the conservation material resulted favorably toward ones with higher concentration of ethylsilicate. This is due to the ethylsilicates characteristic to fill the internal pores of stone. There is discolouration of stone surface after treatment with conservation material. This was more prominent with the product of higher ethylsilicate concentration.

Studies on the Interaction of Biocides and Ethylsilicate Consolidants for Stone Monument (석조문화재 살생물제와 에틸실리게이트 강화제의 상호작용에 관한 연구)

  • Do, Jin-Young;Yun, Yun-Kyung;Lee, Tae-Jong;Kyung, Hye-Sun
    • Journal of Conservation Science
    • /
    • v.21
    • /
    • pp.73-88
    • /
    • 2007
  • In this paper, the interaction between five biocides(commercial) and two ethylsilicate consolidants for stone monuments, reacted in different sequence, has been studied. Through the structures, weight and gelation time of mixture of biocides and consolidants have been evaluated the reactivity of biocide alone, the reactivity of consolidants and biocides, the reactivity of consolidants and dried biocide, and the reactivity of ethylsilicate gel and biocides. The tested biocides show quite different properties from those of consolidants; after evaporation, some biocides are remained white salt crystals, another need the long time for evaporation and one biocide shows pale brown color. The results have shown an interaction of the tested products each other in some application sequences of the products. When the application of liquid state biocides with consolidants, it was noted that some biocide seem to interfere with the formation of gel due to reaction of consolidants and water and salts in biocides. In the reaction of ethylsilicate with dried biocides have shown a heterogenous gel(transparent layer with ethylsilicate alone and white layer which is mixed biocide and ethylsilicate) and many cracks in product due to the different shrinkage, thus the products don't play a role as consolidants. There is no change in structures and color in reaction of the gas state biocide and ethylsilicate gel.

  • PDF

Influence of Salts on Consolidation of Nebra Sandstone (네브라 사암의 강화처리에 미치는 염의 영향)

  • Do, Jin-Young
    • Journal of Conservation Science
    • /
    • v.18 s.18
    • /
    • pp.89-96
    • /
    • 2006
  • Surface layers of stone cultural properties including the soluble salt need consolidation because they are mostly very weak. There is a lot of research on the penetration depth of consolidant in stone and the effect of consolidant on mechanical stability of deteriorated structure. But some conservation experiences show that consolidation with silicic acid ester is not successful on salt contaminated stone cultural properties. In this study, in order to assess the influence of soluble salts$(CaSO_4\;2H_2O,\;NaNO_3)$ on the efficiency of consolidation on the deteriorated stone cultural properties(Nationalgalerie, Berlin, Germany) sandstone samples have been soaked with the salts solution. The impregnation of consolidant based on ethyl filicate have been afterwards carried out on these samples. As a result, it confirms that the soluble salts act as a preventer or consolidation. They fill up the pores in the stone and prevent that sufficient amount of consolidant enter deeply into the stone. According to this result, if use silicic ethyl ester as a consolidant for the research object which is built by Nebra sandstone, desalination is necessary before the treatment with consolidant. But it is also reported by other researches that some soluble salts improve the consolidation effect. Therefore it should be necessary to pre-study about salt and its harmfulness before the consolidation treatment. In order to consolidate without the aggravative damage in salt contaminated stone cultural heritage, we must first of all study the relations among salt, stone and consolidant.

  • PDF

Deterioration of the Rock-carved Seated Buddha at Golguram Hermitage, Gyeongju and Effect of the Ethylsilicate Consolidant (경주 골굴암 마애여래좌상 구성암석의 손상과 에틸실리케이트 암석강화제의 효과)

  • Do, Jin Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.71-81
    • /
    • 2017
  • Rock properties and the effects of chemicals that were used for conservation were studied for effective conservation treatment of Seated Buddha rock carving, which is composed of grayish white tuff, at Golguram Hermitage, Gyeongju. The rocks contain 3-5% montmorillonite, a swelling mineral and reacting with water, the d spacing of swelling minerals was increased (1.54-2.69%). On the one hand, the physical properties of the rock samples, such as surface hardness, water absorption rate, and porosity improved after the application of ethyl silicate-based stone strengthener. On the other, the interlayer of swelling minerals decreased and greater the of swelling mineral content, the greater is the extent of swelling (4.23-12.12%). When the ethyl silicate-based stone strengthener was applied after pretreatment with a swelling inhibitor, the physical properties were similar to those of the stone strengthener alone. There was no interlayer spacing change of swelling minerals due to swelling inhibition treatment; however, when the stone strengthener was applied after the swelling inhibitor, interlayer changes were similar to those when only the stone strengthener was treated (4.10-11.85%). Though the peak intensity of swelling minerals in X-ray diffraction pattern decreased, the effect of the swelling inhibitor was almost negligible. Therefore, it is not appropriate to use ethyl silicate-based stone strengthener for Golgulam rock containing swelling minerals and supplementing them with a swelling inhibition system is not effective. Because weathering rapidly progresses when swelling minerals contact moisture, for now, measures to prevent water contact, such as expansion of the canopy, are needed in the lower and side parts of the carving.

Quantitative Evaluation for Effectiveness of Consolidation Treatment by Using the Chemical of Ethyl Silicate Series for the Sandstone in Yeongyang (영양 사암을 대상으로 한 에틸실리케이트 계열 처리제의 강화효과 평가)

  • Lee, Jang-Jon;Han, Min-Su;Song, Chi-Young;Jun, Byung-Kyu;Do, Min-Hwan
    • 보존과학연구
    • /
    • s.30
    • /
    • pp.125-136
    • /
    • 2009
  • Stone cultural heritages in Korea have a severe damages from chemical and biological weathering because most of them have been situated in outdoors without any suitable protection systems, and this in turn causes deformation and structural damage. To counteract these problems and increase durability, various kinds of conservation materials are used in the conservation and restoration treatments. However until now there are not many practical and technological experiments on this subject. This paper attempts quantitative evaluation of effectiveness about chemical of ethylsilicate based resin for sandstone in Yeongyang-gun. It takes a long time to evaluate durability and side effect after conservation materials treatment. So we use artificial weathering through freezing§ thawing experimental method. As a result of this experiment, porosity and absorptance increased, and elastic wave speed, elastic modules, unconfined compression strength and tensile strength decreased more than before. This study plans to make a scientific method study about weathering factor and mechanism, and to deduce correlation between artificial weathering and natural weathering.

  • PDF

Field Experiments of Scientific Conservation Treatment for Bangudae Petroglyphs in Ulsan, South Korea (울산반구대암각화 보존처리를 위한 현장적용실험)

  • Lee, Tae-jong;Oh, Jung-hyeon;Kim, Sa-dug
    • 보존과학연구
    • /
    • s.33
    • /
    • pp.69-83
    • /
    • 2012
  • Field experiments for Conservation damage on selected spots were carried out prior to direct conservation treatments for Bangudae Petroglyphs in Ulsan. It was found that there is a big difference in treatment effects according to the treatment technique and application rather than on the treatment material use. Based on the results of this study, a plan for the conservation treatment of Bangudae Petroglyphs will be suggested by providing new materials and application techniques for cracks, adhesive application and consolidation by conducting artificial weathering tests and continued monitoring.

  • PDF

Thermal Performance Evaluation of Composite Phase Change Material Developed Through Sol-Gel Process (졸겔공법을 이용한 복합상변화물질의 열성능 평가)

  • Jin, Xinghan;Haider, Muhammad Zeeshan;Park, Min-Woo;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.555-566
    • /
    • 2023
  • In this study, a composite phase change material (CPCM) produced using the SOL-GEL technique was developed as a thermal energy storage medium for low-temperature applications. Tetradecane and activated carbon (AC) were used as the core and supporting materials, respectively. The tetradecane phase change material (PCM) was impregnated into the porous structure of AC using the vacuum impregnation method, and a thin layer of silica gel was coated on the prepared composite using the SOL-GEL process, where tetraethyl orthosilicate (TEOS) was used as the silica source. The thermal performance of the CPCM was analysed using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). DSC results showed that the pure tetradecane PCM had melting and freezing temperatures of 6.4℃ and 1.3℃ and corresponding enthalpies 226 J/g and 223.8 J/g, respectively. The CPCM exhibited enthalpy of 32.98 J/g and 27.7 J/g during the melting and freezing processes at 7.1℃ and 2.4℃, respectively. TGA test results revealed that the AC is thermally stable up to 500℃, which is much higher than the decomposition temperature of the pure tetradecane, which is around 120℃. Moreover, in the case of AC-PCM and CPCM thermal degradation started at 80℃ and 100℃, respectively. The chemical stability of the CPCM was studied using Fourier-transform infrared (FT-IR) spectroscopy, and the results confirmed that the developed composite is chemically stable. Finally, the surface morphology of the AC and CPCM was analysed using scanning electron microscopy (SEM), which confirmed the presence of a thin layer of silica gel on the AC surface after the SOL-GEL process.