본 논문은 고속의 프랙탈 영상압축 기법으로 알려져 있는 Bath 프랙탈 영상 압축 기법의 성능을 여러 가지 측면에서 분석한다. Bath 프랙탈 영상 압축 기법은 영상의 빠른 복호화가 가능하므로 미래의 다양한 형태로 요구되는 정보서비스, VOD(Video On Demand), CD-ROM 등과 같이 저장되어 있는 영상 정보의 빠른 복원이 요구되는 곳에 적합한 부호화 기술이므로 그 성능에 대한 분석이 중요하다. 본 논문에서는 Bath 프랙탈 압축 기법의 양자화 방법에 따른 성능 분석, 프랙탈 계수 값의 분포에 따른 성능 평가, 사용된 어핀 맵핑식에 따른 성능 비교, 영상내의 에지 빈도수에 따른 성능 변화, 쿼드트리 구조의 작은 블록들에 대한 BFT의 성능 평가 등을 고찰한다.
This paper proposes a method to recognize the noisiness of road images connected with the extraction of lane-related information in order to prevent the usage of erroneous information. The proposed method uses a fuzzy neural network(FNN) with the back-Propagation loaming algorithm. The U decides road images good or bad with respect to visibility of lane marks on road images. Most input parameters to the FNN are extracted from an edge distribution function(EDF), a function of edge histogram constructed by edge phase and norm. The shape of the EDF is deeply correlated to the visibility of lane marks of road image. Experimental results obtained by simulations with real images taken by various lighting and weather conditions show that the proposed method was quite successful, providing decision-making of noisiness with about 99%.
본 논문에서는 점묘화 표현을 위한 기법을 제한한다. 신인상파(Neo-Impressionist) 화가 쇠라는 캔버스위의 독립 색채들은 망막위에서 재조직된다는 이론을 바탕으로 점묘화를 제안한다. 이는 색의 병치혼합과 보색대비를 이용해 빛의 가산혼합이 회화작품에 적용될 수 있도록 하기위해 브러시 스트로크로 작은 점을 이용한다. 이러한 점묘화를 표현하기위해서 쇠라의 작품과 동시대의 색이론 분석을 통해 색의 분할과 병치혼합의 이론적 배경을 알아보고 이를 통해 점묘 스트로크의 색상, 모양, 방향등을 결정할 수 있는 알고리즘을 소개한다. 먼저 신인상파의 팔레트 분석을 통해 칼라모델을 설계한다. 또한 점의 효율적인 분포를 위해 재귀적인 Wang Tile을 이용한다. 점묘의 색상구성은 명암의 단계별로 처리된다. 이렇게 함으로써 명암표현을 위한 보색의 배치를 적절히 표현할 수 있다. 이때 점묘 스트로크의 방향은 입력영상의 에지방향을 따르도록 보간법을 이용해 계산한다.
본 논문은 칼라 성분들간의 차분 영상과 휘도 영상을 이용하여 산출한 색차 휘도합 영상을 대상으로 블록에 기반한 영상 분할을 수행하여 객체의 형상 정보를 추출함으로써 분할 특성을 개선한 블록 기반 칼라 영상 분할 기법에 관한 것이다. 우선, R, G, B 영상들 간의 차분 성분들을 구하여 합산한 후, 이를 정규화하여 색차합 영상을 구한다. 다음으로 화소 단위로 휘도 영상의 상위 2비트와 정하화된 색차합 영상의 하위 6비트를 결합하여 색차 휘도합 영상을 얻는다. 이후, 기설정된 크기의 블록으로 분할된 색차 휘도합 영상의 각 블록을 질감 블록과 단순 블록 및 에지 블록으로 분류하고 각 유형의 블록별로 병합한 후, 기설정된 마커 배정 규칙에 따라 선택적으로 마커를 부여한다. 마지막으로, 마커가 부여되지 않은 블록을 대상으로 화소 단위의 워터쉐드 알고리즘을 적용함으로써 자연스러운 형상 정보를 얻을 수 있다. 컴퓨터 시뮬레이션 결과를 통해 고찰할 때, 제안된 방범은 질감 영역에서의 과분할의 문제와 과도한 연산량의 부담을 효과적으로 경감시킬 수 있으나, 더불어, 영상 분할용 파라미터들의 민감도가 낮아 서로 다른 화소 분포 특성온 갖는 영상들에 전역적인 파라미터들사용할 수 있을 뿐만 아니라 특히, 색차 휘도합 영상에 반영된 색차 성분에 힘입어 저대조 경계면에서의 분할 특성을 현저히 개선시킬 수 있는 이점이 있다.
본 논문에서는 이산 코사인 변환한 결과를 기반으로 필터링을 통해 디모자이킹 하는 알고리듬을 제안한다. 이산 코사인 변환한 결과로 에너지가 에지방향의 정보를 나타내는 분포 특성을 활용하여 가중치를 부여할 수 있는 효율적인 방법을 제안하고 이를 통해 필터링 하는 방법을 제안한다. 실험결과에서는 기존의 양선형 보간법에 비해 PSNR 측면에서의 뛰어난 성능을 보여준다.
본 논문에서는 비디오 자막 이미지를 인식하기 위해 필요한 영상 향상의 단계로서 다중 결합을 적용한다. 또한 다중 결합을 위한 동일한 자막의 판단 및 결합된 결과를 재평가하기 위한 방법을 제안한다. 입력된 칼라 이미지로부터 RLS(Run Length Smearing)가 적용된 에지 이미지를 얻고, 수직 및 수평 히스토그램 분포를 이용하여 자막과 자막 영역에 대한 정보를 추출한다. 프레임 내의 자막 영역의 중첩 정도를 이용하여 동일 자막을 판단하고, 동일한 자막을 갖는 프레임들끼리 다중 결합을 수행함으로써 향상된 이미지를 얻는다. 끝으로 결합된 영상에 대한 평가를 수행하여 잘못 결합된 이미지들로 인한 오류를 해결하고 재평가한다. 제안한 방법을 통해, 배경 부분의 잡영이 완화된 자막 이미지를 추출하여 인식의 정확성과 신뢰성을 높일 수 있었다. 또한 동일한 자막의 시작 프레임과 끝 프레임의 위치 파악은 디지털 비디오의 색인 및 검색에 효과적으로 이용될 수 있을 것이다.
본 연구에서는 저 명암 대비 영상에서 잡음이 많은 육각형을 포함하는 윤곽 검출과 보완의 2단계 처리방법을 제안한다. 이 방법은 라플라시안-가우시안 필터(LGF)의 조합과 형상에 의존하는 필터의 아이디어에 기초한다. 먼저, 1단계에서는 모서리에서 특히 육각형상의 에지를 검출하기 위한 검출기로서 6개의 마스크를 갖는 알고리즘을 사용한다. 여기에서 두 개의 삼각화살 모양의 필터는 육각형의 삼각화살 모양의 접속부를 검출하기 위해 사용되고, 기타 네 개의 필터는 육각형 주변의 에지를 검출하기 위해 사용된다. 자연영상으로서 보통 규칙적인 육각형상의 각막 내피 세포를 선택하며, 이 각막 내피 세포의 형상을 자동적으로 계측하는 것은 임상진단에 있어서 중요하다. 그 유효성을 평가하기 위해 제안 방법과 기존 방법을 잡음을 포함하는 육각형 영상에 적용한다. 그 결과, 제안 알고리즘이 기존의 다른 방법에 비해 잡음에 대한 강인성과 출력 신호 대 잡음비, 에지 일치율 및 검출 정확도의 면에서 보다 양호한 검출률을 나타냈다. 다음으로, 2단계에서는 에너지 최소화 알고리즘에 의한 세선화 영상의 결손 부분을 보완한 후 임상진단에 필요한 정보를 제공하는 세포의 면적과 분포를 계산한다.
유전자알고리즘의 교차나 돌연변이 연산을 직접적으로 사용하지 않고 개체군의 확률분포를 추정하여 보다 효율적인 탐색을 수행하려는 분포추정알고리즘이 여러 방법으로 제안되었다. 그러나 실제로 변수들간의 고차상관관계를 파악하는 일은 쉽지 않은 일이라 대부분의 경우 낮은 차수의 상관관계를 제한된 가정하에 추정하게 된다. 본 논문에서는 데이타의 고차상관관계를 표현할 수 있고 최적 해를 좀 더 효율적으로 찾을 수 있는 새로운 분포추정알고리즘을 제안한다. 제안된 알고리즘에서는 상관관계가 있을 것으로 추정되는 변수들의 집합으로 정의된 하이퍼에지로 구성된 랜덤 하이퍼그래프 모델을 구축하여 변수들 간의 고차상관관계를 표현하고, 베이지안 샘플링 알고리즘(Bayesian Sampling Algorithm)을 통해 다음 세대의 개체를 생성한다. 기만하는 빌딩블럭(deceptive building blocks)을 가진 분해가능(decomposable) 함수에 대하여 실험한 결과 성공적으로 최적해를 구할 수 있었으며 단순 유전자알고리즘과 BOA (Bayesian Optimization Algorithm)와 비교하여 좋은 성능을 얻을 수 있었다.
최근 IoT 기술과 AI의 성능향상에 따라 폭넓은 분야에서 자동화와 무인화가 진행되고 있으며, 사물인식과 객체분류 등 자동화의 기반이 되는 영상처리에 대한 관심이 높아지고 있다. 영상의 잡음 제거는 영상에 기반한 시스템에서 전처리 단계로 사용하는 중요한 과정으로 다양한 연구가 진행되었으나, 대부분의 경우 에지와 같은 고주파 성분에서 스무딩 효과에 의해 디테일한 정보를 보존하기 어렵다는 단점이 있다. 본 논문은 AWGN(additive white Gaussian noise)에 훼손된 영상을 가우시안 분포에 기반한 퍼지 가중치를 사용하여 복원하는 알고리즘을 제안한다. 제안한 알고리즘은 필터링 마스크와 잡음 추정치를 서로 비교하여 필터링 과정을 스위칭하였으며, 영상의 저주파 및 고주파 성분에 따라 퍼지 가중치를 계산하여 영상을 복원하였다.
시그마필터는 특성화된 근접분포구도로 시그마 값을 국부통계값들로부터 산출한다. 표준평균필터를 교정하여 잡음을 제거하는 동시에 에지를 보존하도록 설계되어 있으나 미세부분 향상에는 취약하다. 종래의 시그마 접근들도 잡음제거에 치중되어 있었을 뿐 특징구역의 향상은 소홀하였다. 본 논문은 국부통계값들과 함수 부합을 활용한 적응영상향상 알고리즘을 제안한다, 이들 값들은 영상향상의 적응 실현에 유용하여 잡음을 평활시키고 영상의 미세부분을 향상한다. 국부적응처리를 위하여 매 이동창에서 평가척도를 만족하는 파라미터가 추정되고 비중화된다. 그리고 실험 결과는 제안된 방식의 효능을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.