• 제목/요약/키워드: 에지 분포

검색결과 121건 처리시간 0.021초

Bath Fractal 변환에 의한 영상압축 기법의 성능 분석 (Performance Analysis of Bath Fractal Image Compression)

  • 강현철;문영식
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1996년도 학술대회
    • /
    • pp.187-190
    • /
    • 1996
  • 본 논문은 고속의 프랙탈 영상압축 기법으로 알려져 있는 Bath 프랙탈 영상 압축 기법의 성능을 여러 가지 측면에서 분석한다. Bath 프랙탈 영상 압축 기법은 영상의 빠른 복호화가 가능하므로 미래의 다양한 형태로 요구되는 정보서비스, VOD(Video On Demand), CD-ROM 등과 같이 저장되어 있는 영상 정보의 빠른 복원이 요구되는 곳에 적합한 부호화 기술이므로 그 성능에 대한 분석이 중요하다. 본 논문에서는 Bath 프랙탈 압축 기법의 양자화 방법에 따른 성능 분석, 프랙탈 계수 값의 분포에 따른 성능 평가, 사용된 어핀 맵핑식에 따른 성능 비교, 영상내의 에지 빈도수에 따른 성능 변화, 쿼드트리 구조의 작은 블록들에 대한 BFT의 성능 평가 등을 고찰한다.

  • PDF

도로영상의 잡음도 식별을 위한 퍼지신경망 알고리즘 (A Fuzzy Neural-Network Algorithm for Noisiness Recognition of Road Images)

  • 이준웅
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.147-159
    • /
    • 2002
  • This paper proposes a method to recognize the noisiness of road images connected with the extraction of lane-related information in order to prevent the usage of erroneous information. The proposed method uses a fuzzy neural network(FNN) with the back-Propagation loaming algorithm. The U decides road images good or bad with respect to visibility of lane marks on road images. Most input parameters to the FNN are extracted from an edge distribution function(EDF), a function of edge histogram constructed by edge phase and norm. The shape of the EDF is deeply correlated to the visibility of lane marks of road image. Experimental results obtained by simulations with real images taken by various lighting and weather conditions show that the proposed method was quite successful, providing decision-making of noisiness with about 99%.

명암정보를 이용한 점묘화 표현 기법 (Pointillism Expression Technique Using Light and Shade Information)

  • 서상현;윤경현
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.975-981
    • /
    • 2007
  • 본 논문에서는 점묘화 표현을 위한 기법을 제한한다. 신인상파(Neo-Impressionist) 화가 쇠라는 캔버스위의 독립 색채들은 망막위에서 재조직된다는 이론을 바탕으로 점묘화를 제안한다. 이는 색의 병치혼합과 보색대비를 이용해 빛의 가산혼합이 회화작품에 적용될 수 있도록 하기위해 브러시 스트로크로 작은 점을 이용한다. 이러한 점묘화를 표현하기위해서 쇠라의 작품과 동시대의 색이론 분석을 통해 색의 분할과 병치혼합의 이론적 배경을 알아보고 이를 통해 점묘 스트로크의 색상, 모양, 방향등을 결정할 수 있는 알고리즘을 소개한다. 먼저 신인상파의 팔레트 분석을 통해 칼라모델을 설계한다. 또한 점의 효율적인 분포를 위해 재귀적인 Wang Tile을 이용한다. 점묘의 색상구성은 명암의 단계별로 처리된다. 이렇게 함으로써 명암표현을 위한 보색의 배치를 적절히 표현할 수 있다. 이때 점묘 스트로크의 방향은 입력영상의 에지방향을 따르도록 보간법을 이용해 계산한다.

  • PDF

색차 휘도합 영상을 이용한 블록 기반 칼라 영상 분할 (Block-based Color Image Segmentation Using CLS Image)

  • 곽노윤
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2000년도 추계학술발표논문집
    • /
    • pp.271-276
    • /
    • 2000
  • 본 논문은 칼라 성분들간의 차분 영상과 휘도 영상을 이용하여 산출한 색차 휘도합 영상을 대상으로 블록에 기반한 영상 분할을 수행하여 객체의 형상 정보를 추출함으로써 분할 특성을 개선한 블록 기반 칼라 영상 분할 기법에 관한 것이다. 우선, R, G, B 영상들 간의 차분 성분들을 구하여 합산한 후, 이를 정규화하여 색차합 영상을 구한다. 다음으로 화소 단위로 휘도 영상의 상위 2비트와 정하화된 색차합 영상의 하위 6비트를 결합하여 색차 휘도합 영상을 얻는다. 이후, 기설정된 크기의 블록으로 분할된 색차 휘도합 영상의 각 블록을 질감 블록과 단순 블록 및 에지 블록으로 분류하고 각 유형의 블록별로 병합한 후, 기설정된 마커 배정 규칙에 따라 선택적으로 마커를 부여한다. 마지막으로, 마커가 부여되지 않은 블록을 대상으로 화소 단위의 워터쉐드 알고리즘을 적용함으로써 자연스러운 형상 정보를 얻을 수 있다. 컴퓨터 시뮬레이션 결과를 통해 고찰할 때, 제안된 방범은 질감 영역에서의 과분할의 문제와 과도한 연산량의 부담을 효과적으로 경감시킬 수 있으나, 더불어, 영상 분할용 파라미터들의 민감도가 낮아 서로 다른 화소 분포 특성온 갖는 영상들에 전역적인 파라미터들사용할 수 있을 뿐만 아니라 특히, 색차 휘도합 영상에 반영된 색차 성분에 힘입어 저대조 경계면에서의 분할 특성을 현저히 개선시킬 수 있는 이점이 있다.

  • PDF

이산여현변환을 이용한 베이어 패턴 디모자이킹 알고리듬 (DCT Methods for Demosaicking of Bayer-Sampled Color Images)

  • 신혜진;전광길;정제창
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2012년도 하계학술대회
    • /
    • pp.59-62
    • /
    • 2012
  • 본 논문에서는 이산 코사인 변환한 결과를 기반으로 필터링을 통해 디모자이킹 하는 알고리듬을 제안한다. 이산 코사인 변환한 결과로 에너지가 에지방향의 정보를 나타내는 분포 특성을 활용하여 가중치를 부여할 수 있는 효율적인 방법을 제안하고 이를 통해 필터링 하는 방법을 제안한다. 실험결과에서는 기존의 양선형 보간법에 비해 PSNR 측면에서의 뛰어난 성능을 보여준다.

  • PDF

비디오 자막 추출 및 이미지 향상에 관한 연구 (Video Caption Extraction and Image Enhancement)

  • 김소명;최영우;정규식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.359-361
    • /
    • 2000
  • 본 논문에서는 비디오 자막 이미지를 인식하기 위해 필요한 영상 향상의 단계로서 다중 결합을 적용한다. 또한 다중 결합을 위한 동일한 자막의 판단 및 결합된 결과를 재평가하기 위한 방법을 제안한다. 입력된 칼라 이미지로부터 RLS(Run Length Smearing)가 적용된 에지 이미지를 얻고, 수직 및 수평 히스토그램 분포를 이용하여 자막과 자막 영역에 대한 정보를 추출한다. 프레임 내의 자막 영역의 중첩 정도를 이용하여 동일 자막을 판단하고, 동일한 자막을 갖는 프레임들끼리 다중 결합을 수행함으로써 향상된 이미지를 얻는다. 끝으로 결합된 영상에 대한 평가를 수행하여 잘못 결합된 이미지들로 인한 오류를 해결하고 재평가한다. 제안한 방법을 통해, 배경 부분의 잡영이 완화된 자막 이미지를 추출하여 인식의 정확성과 신뢰성을 높일 수 있었다. 또한 동일한 자막의 시작 프레임과 끝 프레임의 위치 파악은 디지털 비디오의 색인 및 검색에 효과적으로 이용될 수 있을 것이다.

  • PDF

각막 내피 세포 영상내 육각형 경계의 검출과 보완법 (Extraction and Complement of Hexagonal Borders in Corneal Endothelial Cell Images)

  • 김응규
    • 전자공학회논문지
    • /
    • 제50권3호
    • /
    • pp.102-112
    • /
    • 2013
  • 본 연구에서는 저 명암 대비 영상에서 잡음이 많은 육각형을 포함하는 윤곽 검출과 보완의 2단계 처리방법을 제안한다. 이 방법은 라플라시안-가우시안 필터(LGF)의 조합과 형상에 의존하는 필터의 아이디어에 기초한다. 먼저, 1단계에서는 모서리에서 특히 육각형상의 에지를 검출하기 위한 검출기로서 6개의 마스크를 갖는 알고리즘을 사용한다. 여기에서 두 개의 삼각화살 모양의 필터는 육각형의 삼각화살 모양의 접속부를 검출하기 위해 사용되고, 기타 네 개의 필터는 육각형 주변의 에지를 검출하기 위해 사용된다. 자연영상으로서 보통 규칙적인 육각형상의 각막 내피 세포를 선택하며, 이 각막 내피 세포의 형상을 자동적으로 계측하는 것은 임상진단에 있어서 중요하다. 그 유효성을 평가하기 위해 제안 방법과 기존 방법을 잡음을 포함하는 육각형 영상에 적용한다. 그 결과, 제안 알고리즘이 기존의 다른 방법에 비해 잡음에 대한 강인성과 출력 신호 대 잡음비, 에지 일치율 및 검출 정확도의 면에서 보다 양호한 검출률을 나타냈다. 다음으로, 2단계에서는 에너지 최소화 알고리즘에 의한 세선화 영상의 결손 부분을 보완한 후 임상진단에 필요한 정보를 제공하는 세포의 면적과 분포를 계산한다.

고차상관관계를 표현하는 랜덤 하이퍼그래프 모델 진화를 위한 베이지안 샘플링 알고리즘 (A Bayesian Sampling Algorithm for Evolving Random Hypergraph Models Representing Higher-Order Correlations)

  • 이시은;이인희;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권3호
    • /
    • pp.208-216
    • /
    • 2009
  • 유전자알고리즘의 교차나 돌연변이 연산을 직접적으로 사용하지 않고 개체군의 확률분포를 추정하여 보다 효율적인 탐색을 수행하려는 분포추정알고리즘이 여러 방법으로 제안되었다. 그러나 실제로 변수들간의 고차상관관계를 파악하는 일은 쉽지 않은 일이라 대부분의 경우 낮은 차수의 상관관계를 제한된 가정하에 추정하게 된다. 본 논문에서는 데이타의 고차상관관계를 표현할 수 있고 최적 해를 좀 더 효율적으로 찾을 수 있는 새로운 분포추정알고리즘을 제안한다. 제안된 알고리즘에서는 상관관계가 있을 것으로 추정되는 변수들의 집합으로 정의된 하이퍼에지로 구성된 랜덤 하이퍼그래프 모델을 구축하여 변수들 간의 고차상관관계를 표현하고, 베이지안 샘플링 알고리즘(Bayesian Sampling Algorithm)을 통해 다음 세대의 개체를 생성한다. 기만하는 빌딩블럭(deceptive building blocks)을 가진 분해가능(decomposable) 함수에 대하여 실험한 결과 성공적으로 최적해를 구할 수 있었으며 단순 유전자알고리즘과 BOA (Bayesian Optimization Algorithm)와 비교하여 좋은 성능을 얻을 수 있었다.

AWGN 환경에서 가우시안 분포 기반의 퍼지 가중치를 사용한 스위칭 필터 알고리즘 (Switching Filter Algorithm using Fuzzy Weights based on Gaussian Distribution in AWGN Environment)

  • 천봉원;김남호
    • 한국정보통신학회논문지
    • /
    • 제26권2호
    • /
    • pp.207-213
    • /
    • 2022
  • 최근 IoT 기술과 AI의 성능향상에 따라 폭넓은 분야에서 자동화와 무인화가 진행되고 있으며, 사물인식과 객체분류 등 자동화의 기반이 되는 영상처리에 대한 관심이 높아지고 있다. 영상의 잡음 제거는 영상에 기반한 시스템에서 전처리 단계로 사용하는 중요한 과정으로 다양한 연구가 진행되었으나, 대부분의 경우 에지와 같은 고주파 성분에서 스무딩 효과에 의해 디테일한 정보를 보존하기 어렵다는 단점이 있다. 본 논문은 AWGN(additive white Gaussian noise)에 훼손된 영상을 가우시안 분포에 기반한 퍼지 가중치를 사용하여 복원하는 알고리즘을 제안한다. 제안한 알고리즘은 필터링 마스크와 잡음 추정치를 서로 비교하여 필터링 과정을 스위칭하였으며, 영상의 저주파 및 고주파 성분에 따라 퍼지 가중치를 계산하여 영상을 복원하였다.

적응비중화 시그마필터에 의한 영상향상 (Image Enhancement Using Adaptive Weighted Sigma Filter)

  • 황재호
    • 대한전자공학회논문지SP
    • /
    • 제44권2호
    • /
    • pp.19-26
    • /
    • 2007
  • 시그마필터는 특성화된 근접분포구도로 시그마 값을 국부통계값들로부터 산출한다. 표준평균필터를 교정하여 잡음을 제거하는 동시에 에지를 보존하도록 설계되어 있으나 미세부분 향상에는 취약하다. 종래의 시그마 접근들도 잡음제거에 치중되어 있었을 뿐 특징구역의 향상은 소홀하였다. 본 논문은 국부통계값들과 함수 부합을 활용한 적응영상향상 알고리즘을 제안한다, 이들 값들은 영상향상의 적응 실현에 유용하여 잡음을 평활시키고 영상의 미세부분을 향상한다. 국부적응처리를 위하여 매 이동창에서 평가척도를 만족하는 파라미터가 추정되고 비중화된다. 그리고 실험 결과는 제안된 방식의 효능을 보여준다.