본 논문에서는 블록 기반으로 부호화된 영상에 대하여 블록 분류 (block classification)와 다층 퍼셉트론 (multi-layer perceptron, MLP) 모델을 이용한 적응적 블록화 현상 제거 알고리듬을 제안하였다. 제안한 방법에서는 각 블록을 DCT 계수의 분포 특성에 따라 네 개의 클래스로 분류한 다음, 인접한 두 블록의 클래스 정보에 따라 수평 및 수직 블록 경계 영역에 대하여 적응적으로 신경망 필터를 적용한다. 즉, 평탄한 영역, 수평 방향 에지 영역, 수직 방향 에지 영역, 및 복잡한 영역에 대하여 각각 서로 다른 신경망 필터를 수평 및 수직 방향으로 적용하여 블록화 현상을 제거한다. 모의 실험 결과를 통하여 제안한 방법이 객관적 화질 및 주관적 화질 측면에서 기존의 방법보다 그 성능이 우수함을 확인하였다.
본 논문에서는 블록분류를 통하여 얻어진 블록별 특성에 따라 블록간 보간법과 신호적응필터를 이용한 새로운 후처리 기법을 제안한다. 제안한 알고리듬에서는 모든 블록에 대해서 DCT 계수의 특성에 따라서 저주파와 고주파 블록으로 나눈다. 이웃한 네 개의 저주파 블록에 대해서는 보간법을 이용하여 블록화 현상을 제거하고, 링잉현상이 발생할 가능성이 있는 고주파 블록에서는 에지맵에 따라 신호적응필터를 적용하여 영상의 에지들은 보호하면서 에지주위에 나타나는 링잉현상을 제거한다. 모의실험 결과 제안한 방법이 기존방법에 비하여 객관적 및 주관적 화질 측면에서도 우수한 성능을 보임을 확인하였다.
본 논문에서는 DWT기반의 점진적 영상부호화를 위한 알고리즘 기법을 제안해보고자 한다. DWT와 에지부분을 추출하고 확장된 EZW 알고리즘을 이용하여 기존의 Embedded Coding 보다 효과적인 부호화 방법을 설계해 보았다. 일반적으로 에지 부분은 원 영상을 복원하는데 있어 매우 중요한 역할을 하게 된다. 영상에 대해 DWT를 거치게 되면 계수들은 중요계수와 비중요계수 두가지의 그룹으로 분류할 수 있다. 본 논문에서는 에지부분이 영상에서는 중요계수처럼 나타난다는 것을 이용하였다. 특히 DWT 영상에서는 방향성에 의해서 고주파 부대역에서 이러한 특성이 그대로 나타난다는 것을 확인할 수 있다. 또한 Embedded Coding에서 중요계수처럼 영상을 복원하는데 중요한 정보들은 전송순서에서 보다 우선순위를 가지게 된다. 따라서 본 논문에서 제안하려는 시스템은 영상의 점진적 전송이 요구되는 응용분야에 효과적으로 이용될 수 있을것으로 기대할 수 있을 것이다.
이 논문에서는 영상시퀀스의 프레임간 차영상 블록을 영상활동도의 크기 및 분포에 따라 적응적으로 분류함으로써 영상시퀀스를 압축하는 기법을 제안한다. 활동도의 크기에 의한 분류에서는 차영상 블록에 포함되어 있는 물체의 에지부분에 해당하는 활동블록과 비활동 블록으로 분류하고, 활동도의 분포에 의한 분류에서도 활동블록들을 이산 코사인변환계수의 분포정도를 특징으로 하여 수직, 수평, 저활동 블록으로 분류한다. 대표적인 분류결과를 이용하여 RBFN 신경망을 학습시켜 프레임간 차영상 블록들의 비선형적인 분류 특성을 얻었다. 시뮬레이션 결과 RBFN을 이용한 차영상 블록의 분류가 영상활동도의 정렬방법이나 다층퍼셉트론 신경망(MLP)에 비해 영상시퀀스의 압축성능이 향상되었다.
본 논문에서는 1m 해상도의 위성 영상에서 스테레오 정합의 성능을 향상시키기 위해 그레디언트 히스토그램을 이용하여 정합 창틀의 크기를 자동적으로 결정하는 방법을 제안한다. 영상의 각 화소에 대해 4-neighbor에 위치한 화소의 수평 또는 수직 방향의 평균 그레디언트 값을 계산하여 평탄화 지수 영상(Flatness Index Image)을 생성한다. 강한 에지 화소는 높은 평탄화 지수를 가지며 반면에 비에지 화소의 경우에는 낮은 평탄화 지수를 가진다. 평탄화 지수 영상의 히스토그램을 이용하여 각 화소의 에지 또는 비에지 화소 여부를 결정하는 평탄화 임계값을 구한다. 각 화소의 평탄화 지수가 평탄화 임계값보다 크면 에지화소로, 작으면 비에지 화소로 분류한다. 초기 정합 창틀 내에 존재하는 비에지 화소의 비율이 작으면 밝기 값 변화가 적은 영역으로 판정하고 정합 창틀의 크기를 더 크게 설정하고 이 과정을 정합 창틀이 최대 크기에 도달할 때까지 반복적으로 수행한다. IKONOS 스테레오 위성영상을 실험영상으로 사용하였으며 고정크기의 정합 창틀을 이용한 방법에 비해 향상된 정합 결과를 얻었다.
본 논문에서는 렌즈의 흠집을 추출할 수 있는 퍼지 기법을 이용한 렌즈 흠집 검출 방법을 제안한다. 제안된 방법은 렌즈 영상을 그레이 영상으로 변환한 후, 캐니 마스크를 이용하여 렌즈의 경계선을 추출한다. 추출된 렌즈의 경계선에 대해 평균 이진화와 모폴로지를 이용하여 렌즈 경계선을 보정한다. 렌즈 경계선이 보정된 영상에서 Seed Fill 알고리즘을 적용하여 렌즈의 내부 영역만을 추출한다. 추출된 렌즈의 내부 영역에 해당하는 원 영상에서 소벨 마스크를 적용하여 렌즈 내부 영역의 에지를 추출한다. 렌즈 내부 영역에서 추출된 에지 객체들의 정보를 이용하여 흠집과 비흠집을 분류하는 퍼지 기법을 적용하여 흠집 영역을 추출한다. 본 논문에서 제안된 렌즈의 흠집 검출 방법의 성능을 평가하기 위해 CHEMI, MID, HL, HM 시력 보정용 렌즈를 대상으로 실험한 결과, 제안된 방법이 흠집을 효과적으로 검출하는 것을 확인하였다.
하이퍼네트워크를 학습하는 기존의 방법은 데이터의 분포를 학습하기 위하여 주로 하이퍼에지의 적절한 조합을 찾는데 초점을 맞추었다. 반면 본 논문에서는 주어진 하이퍼에지의 조합 내에서 가중치를 조절하여 데이터의 분포를 학습하도록 하는 방법을 제안한다. 이 방법은 분류 문제에서 하이퍼네트워크가 표현하고 있는 클래스 y에 대한 데이터 x의 조건부 우도(Conditional Likelihood)를 대화하는 방식으로 학습을 진행한다. 본 논문에서는 제안된 학습 방법이 기존의 학습 방법보다 개선된 학습 성능을 보일 뿐만아니라, 제안된 가중치 학습 방법이 기존의 가중치 학습 방법을 포함하는 관계임을 논증한다.
본 논문에서는 신호적응필터 및 블록간 선형조합을 이용하여 멀터미디어 시스템에서 발생하는 양자화잡음을 효율적으로 제거하는 알고리듬을 제안하였다. 제안 알고리듬에서는 모든 블록에 대해서 DCT 계수의 특성에 따라서 저주파, 고주파, 및 중간조 블록으로 블록 분류를 행한 후, 링잉 현상이 발생할 가능성이 있는 영상내의 고주파 블록에 대해서 Sobel 연산자를 이용하여 에지맵을 구한 다음, 에지들의 존재유무에 따른 신호적응필터를 수행함으로써 영상의 원래 에지들을 보호하면서 에지 주위에 나타나는 링잉 현상을 효율적으로 제거한다. 그리고 블록화 현상이 발생하지 않는 곳의 화소 밝기값 정보들을 이용하여 블록화 현상이 발생한곳의 화소 밝기값들을 개선시킴으로서 블록화 현상을 효율적으로 제거한다. 모의실험 결과 기존 방법에 비하여 PSNR 측면에서 0.2~0.4 dB 정도의 향상을 얻었을 뿐만 아니라 주관적 화질면에서도 우수한 성능을 나타냄을 확인하였다.
본 논문에서는 단일 입력 영상에서 특징을 추출하여 실시간으로 에지 대칭과 기울기의 방향성 특징을 이용하여 효과적으로 사람을 검출하는 알고리즘을 제안한다. 제안된 알고리즘은 전처리, 사람 후보 영역 분할, 후보 영역 검증인 3단계로 구성되었다. 여기서 전처리 단계는 주변 조도 환경과 밝기에 강인하고, 사람의 특징인 모양 특징 크기, 사람의 조건을 고려한 사람의 특성을 가진 윤곽선을 검출한다. 그리고 사람 후보 영역 분할 단계는 검출된 윤곽선에서 사람의 에지 대칭성과 크기를 가지고 영역을 분리하고, 에이타부스트 알고리즘을 적용하여 1차 후보 영역을 분할한다. 마지막으로 후보 영역 검증 단계는 분할된 국소 영역에 대한 기울기의 특징 벡터 및 분류기를 이용하여 후보 영역을 검증하여 오검출의 성능을 우수하게 한다. 제안된 알고리즘을 적용하여 모의실험을 한 결과, 제안된 알고리즘은 단일 알고리즘을 적용한 기존 알고리즘 보다 처리 속도가 약 1.7배 정도 개선되었으며, FNR(False Negative Rate)은 3% 정도 우수함을 확인하였다.
본 논문에서는 영상의 명암대비(contrast)를 개선시키는 언샾 마스킹 방법을 제안한다. 언샾 마스킹은 이미지가 가지고 있는 에지와 디테일 정보를 개선시키는데 일반적인 샤프닝 마스크 보다 효과적이기에 이에 관한 많은 연구가 있었다. 제안하는 방법은 방향성 정보를 이용한 블록 단위의 언샾 마스킹 방법으로 영상을 블록 단위로 분할하고 DCT(Discrete Cosine Transform)를 이용하여 각 블록에서 패턴의 방향성 정보를 얻어낸다. DCT 결과로부터 해당 블록들의 방향성 타입을 결정하고 이에 따라 언샾 마스크를 적응적으로 적용한다. 블록의 분류는 평탄영역, 텍스처, 에지 그리고 나머지 형태로 구분되어 진다. 평탄 영역에 속하는 블록은 잡음에 의한 영향을 줄이기 위해 언샾 마스킹을 적용하지 않으며 텍스처와 에지영역에 대해서는 고주파 성분을 강조하기 위해 블록타입에 맞는 적응적 언샾 마스킹을 적용한다. 실험을 통하여 영상에서 평탄 영역은 잡음에 의한 훼손을 줄이며 에지들이 포함된 텍스처 영역은 적응적으로 강조하여 시각적으로 우수한 명암대비 개선 결과를 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.