• 제목/요약/키워드: 에지라인

검색결과 85건 처리시간 0.023초

Delaunary 삼각화에 의한 그룹화 및 외형 탐지 (Edge Grouping and Contour Detection by Delaunary Triangulation)

  • 이상현;정병수;정제평;김정록;문경일
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권1호
    • /
    • pp.135-142
    • /
    • 2013
  • 본 외곽선 탐지는 모양 판별 및 객체 인식과 같은 많은 컴퓨터 시각 분야에 있어서 중요한 문제이다. 대부분의 경우에 지역적인 휘도 변화가 객체 윤곽선에서 보다는 무늬 영역에서 보다 강하게 나타나는 것으로 판명되고 있다. 따라서 각 화소의 가까운 인접된 부분에서만 볼 수 있는 지역적인 에지 특징들은 하나의 윤곽선 존재의 믿을만한 정보가 될 수 없기 때문에 전체적인 분석이 요구되고 있다. 본 연구에서는 형태심리학적 원리를 바탕으로 가상 연산자의 변형된 형태로서 적응성을 갖는 확대 연산자에 의한 지역적인 윤곽선 탐지 기법을 제안한다. 제안 방식의 새로운 점은 확대 방식에 있어서 각 윤곽선 화소에 관해 계산 기하학의 관점에서 Delaunary 다이어그램을 사용한다는 것이다. 윤곽선 그룹화와 관련하여 다중 임계 알고리즘이 도입되고, 각 임계 단계에서 작은 크기의 윤곽선 그룹들은 삭제되며, 자연 3차 스플라인 보간법을 통해 재구축되는 방식의 외형을 나타낸다. 또한, 상이한 임계들의 학습을 통해 입력 인자들의 값에 제안된 알고리즘이 민감하지 않은 견고한 성질을 유지하도록 한다. 본 연구의 구현에서는 기존 접근방식과의 비교를 통해 제안된 외형 결정 방식이 이미지에서 제거된 많은 텍스처들이 있음에도 불구하고 견고하고, 낮은 대비의 외형을 쉽게 감지하는데 효과적임을 보인다.

토지 피복 세분류를 위한 경지 정리 논 자동 추출 (Automatic Extraction of the Land Readjustment Paddy for High-level Land Cover Classification)

  • 염준호;김용일
    • 한국측량학회지
    • /
    • 제32권5호
    • /
    • pp.443-450
    • /
    • 2014
  • 최근 각종 공간정보에 대한 수요가 증가함에 따라 정부 및 지방 자치 단체에서 다양한 공간정보를 제작하여 공급하고 있다. 2000년 대분류 토지피복지도가 제작된 이래 2010년부터 토지 피복 세분류 지도가 작성되기 시작하였으나 현재 일부 지역에 대해서만 세분류 지도가 구축되어있는 상황이다. 또한 그 동안 토지 피복 분류 결과의 고도화를 위하여 다양한 연구들이 진행되어왔지만 대부분의 연구가 대분류 또는 중분류 수준에 그치고 있으며 토지 피복 세분류에 관한 연구는 매우 부족한 실정이다. 따라서 본 연구에서는 토지 피복 중분류의 논 항목을 세분류 갱신하기 위하여 경지 정리 논을 자동으로 추출하는 기법을 제안하였다. 농업 분야에 효과적인 활용이 가능한 RapidEye 위성영상을 이용하였으며 영상에 고주파 필터링을 적용하여 논의 경계 정보를 강조하고 Otsu 임계화를 통해 논 경계에 대한 이진 영상을 취득하였다. 토지 피복 지도와 영상 등록을 수행하여 논 토지 피복에 대한 마스킹을 수행하였으며 이를 통해 논 지역의 경계 정보를 선별하였다. 최종적으로 지역적인 허프 라인 추출을 통하여 끊어진 에지를 이어 논의 경계 정보를 선형으로 추출하고 시작점과 끝점이 유사한 선형을 연결하여 경지 정리 논의 경계 정보를 완성하였다. 연구 결과, 효과적으로 경지 정리 논의 경계를 추출할 수 있었으며 벡터 추출 시 논 토지 피복 세분류 갱신의 상당 부분을 자동화할 수 있음을 확인하였다.

2세대 AiPi+ 용 DLL 기반 저전력 클록-데이터 복원 회로의 설계 (A Design of DLL-based Low-Power CDR for 2nd-Generation AiPi+ Application)

  • 박준성;박형구;김성근;부영건;이강윤
    • 대한전자공학회논문지SD
    • /
    • 제48권4호
    • /
    • pp.39-50
    • /
    • 2011
  • 본 논문에서는 패널 내부 인터페이스의 하나인 2세대 AiPi+의 클록-데이터 복원 회로(Clock & Data Recovery)를 제안하였다. 제안하는 클록-데이터 복원 회로의 속도는 기존 AiPi+ 보다 빠른 1.25 Gbps 로 향상되었으며 다중 위상 클록을 생성하기 위하여 Delay-Locked Loop(DLL)를 사용하였다. 본 논문에서는 패널 내부 인터페이스의 저전력, 작은 면적의 이슈를 만족하는 클록-데이터 복원 회로를 설계하였다. 매우 간단한 방법으로 자동적으로 Harmonic-locking 문제를 해결할 수 있는 주파수 검출기 구조를 제안하여 기존 주파수 검출기(Frequency Detector)의 복잡도, 전류 소모, 그리고 외부 인가에 따른 문제를 개선하였으며, 전압 제어 지연 라인(Voltage Controlled Delay Line) 에서 상승/하강 시간 차이에 따른 에지의 사라짐 현상을 막기 위해서 펄스 폭의 최대치를 제한하는 펄스 폭 오류 보정 방법을 사용하였다. 제안하는 클록-데이터 복원 회로는 CMOS 0.18 ${\mu}m$ 공정으로 제작되었으며 면적은 $660\;{\mu}m\;{\times}\;250\;{\mu}m$이고, 공급 전압은 1.8 V이다. Peak-to-Peak 지터는 15 ps, 입력 버퍼, 이퀄라이저, 병렬화기를 제외한 클록-데이터 복원 회로의 소모 전력은 5.94 mW 이다.

스크린 콘텐츠를 위한 VVC 화면내 삼각형 분할 예측 방법 (VVC Intra Triangular Partitioning Prediction for Screen Contents)

  • 최재륜;권대혁;한희지;이하현;강정원;최해철
    • 방송공학회논문지
    • /
    • 제25권3호
    • /
    • pp.325-337
    • /
    • 2020
  • VVC(Versatile Video Coding)는 ISO/IEC/ITU-T의 JVET(Joint Video Experts Team)에서 표준화 중인 새로운 비디오 부호화 표준으로 스크린 콘텐츠 부호화 툴을 포함한 다양한 기술을 채택하고 있다. 스크린 콘텐츠는 문자 영역과 같이 사선 방향 에지가 자주 발생하는 특징을 가지며, 이런 특징을 갖는 영상에 삼각형 형태의 분할 부호화를 적용하면 압축 효율이 증가할 수 있다. 본 논문에서는 스크린 콘텐츠를 위한 VVC 기반 화면내 삼각형 분할 예측 방법을 제안한다. 기존 VVC의 화면간 예측 부호화에서 삼각형 분할 예측을 지원하는 Triangular Prediction Mode 방법과 유사하게, 제안 방법은 화면내 예측 부호화에서 수직과 수평 방향 예측 모드와 주변 복원 참조 라인을 이용하여 두 개의 사각형 예측 블록을 생성하고 삼각형 모양의 마스크로 두 예측 블록을 가중합하여 최종 예측 신호를 만든다. 제안 방법의 실험 결과는 All Intra 스크린 콘텐츠 영상 실험에서 YUV 각각 평균 1.86%, 1.49%, 1.55% 부호화 성능향상을 보이고, 자연 영상 실험 조건에서는 부호화 효율에 미미한 손실을 보였다. 결론적으로, 화면내 예측 부호화 모드에 제안 방법을 적용하여 압축 성능을 향상할 수 있었다.

UHD 영상의 실시간 처리를 위한 고성능 HEVC SAO 부호화기 하드웨어 설계 (Hardware Design of High-Performance SAO in HEVC Encoder for Ultra HD Video Processing in Real Time)

  • 조현표;박승용;류광기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.271-274
    • /
    • 2014
  • 본 논문에서는 UHD급 영상의 실시간 처리를 위한 고성능 HEVC(High Efficiency Video Coding) SAO(Sample Adaptive Offset) 부호화기의 효율적인 하드웨어 구조를 제안한다. SAO는 HEVC에서 새롭게 채택된 루프 내 필터 기술 중 하나이다. 본 논문에서 제안하는 SAO 부호화기 하드웨어 구조는 메모리 접근 최소화 및 화소들의 처리를 간소화하기 위해 three-layered buffer를 사용한다. 또한 연산시간 및 연산량을 줄이기 위해서 4개의 화소들을 병렬적으로 에지 오프셋과 밴드 오프셋으로 분류하며, 화소들의 분류와 SAO 파라메터 적용을 2단계 파이프라인 구조로 구현하고, 하드웨어 면적을 줄이기 위해서 덧셈과 뺄셈, 쉬프트 연산, 그리고 재귀 비교기만을 사용한다. 본 논문에서 제안하는 SAO 부호화기 하드웨어 구조는 Verilog HDL로 설계하였으며, TSMC $0.18{\mu}m$ CMOS 표준 셀 라이브러리를 사용하여 합성한 결과 약 180k개의 게이트로 구현되었다. 또한, 110MHz의 동작주파수에서 4K UHD급 해상도인 $4096{\times}2160@30fps$의 실시간 처리가 가능하다.

  • PDF