• Title/Summary/Keyword: 에어포일 설계

Search Result 53, Processing Time 0.028 seconds

A Study on the Shapes of Twin Curvy Sail for Unmanned Sail Drone (무인세일드론의 트윈커브세일 형상에 관한 연구)

  • Ryu, In-Ho;Kim, Bu-Gi;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1059-1066
    • /
    • 2021
  • In Korea, the importance of marine activities is great, and automatic weather observation facilities are operating on land to investigate abnormal weather phenomena caused by industrialization; however, the number of facilities at sea is insufficient. Marine survey ships are operated to establish marine safety information, but there are many places where marine survey ships are difficult to access and operating costs are high. Therefore, a small, unmanned vessel capable of marine surveys must be developed. The sail has a significant impact on the sailing performance, so much research has been conducted. In this study, the camber effect, which is a design variable of the twin curvy sail known to have higher aerodynamic performance than existing airfoil shapes, was investigated. Flow analysis results for five cases with different camber sizes show that the lift coefficient is highest when the camber size is 9%. Curvy twin sails had the highest lift coefficient at an angle of attack of 23° because of the interaction of the port and starboard sails. The port sail had the highest lift coef icient at an angle of attack of 20°, and the starboard sail had the lowest lift coef icient at an angle of attack of 15°. In addition, the curvy twin sail had a higher lift coefficient than NACA 0018 at all angles of attack.

A Volume Grid Deformation Code for Computational fluid Dynamics of Moving Boundary Problems (이동경계문제의 전산유체역학을 위한 체적격자변형코드)

  • Ko, Jin-Hwan;Kim, Jee-Woong;Byun, Do-Young;Park, Soo-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1049-1055
    • /
    • 2008
  • Modern multidisciplinary computational fluid dynamics often incorporates moving boundaries, as would be required in the applications such as design optimization, aeroelasticity, or forced boundary motion. It is challenging to develop robust, efficient grid deformation algorithms when large displacement of the moving boundaries is required. In this paper, a volume grid deformation code is developed based on the finite macro-element and the transfinite Interpolation, and then interfaces to a structured multi-block Navier-Stokes in-house code. As demonstrated by an airfoil with pitching motion, the hysteresis loops of lift, drag and moment coefficients of the developed method are shown to be in good agreement with those of experimental data.

Application of an Opensource OpenFoam for Unsteady Aerodynamics Analysis of an Oscillating Cylinder (진동하는 원통 비정상 공력해석을 위한 OpenFoam OverSet격자 활용)

  • Kim, GunHong;Han, Cheolhuei
    • Journal of Institute of Convergence Technology
    • /
    • v.11 no.1
    • /
    • pp.39-42
    • /
    • 2021
  • 2차원 유동장내 수직 진동하는 원통의 Von Karman 와열 유동 현상에 대한 진동 주파수 계산 문제는 진동하는 물체의 비정상 공력 해석 연구 검증에 많이 사용하는 고전적 방법이다. 본 연구에서는 오픈소스 OpenFoam 기반의 중첩격자 기법을 사용하여 층류 유동장내의 수직방향 진동하는 원통 주변의 비정상 유동 현상과 원통 벽면에서의 공력 특성 변화를 해석하기 위한 일련의 해석 단계들과 결과를 타 연구그룹과 비교하였다. 원통 형상과 진동에 의한 와열 유동의 주기적 유동 특성과 복잡성 해석의 건전성을 확보하기 위하여 격자와 시간제어에 대한 해의 정확도에 미치는 영향을 평가하였다. 본 연구에서 수행한 해석 방법은 일관성과 신뢰성 있는 해석 결과들 보여주었으며, 향후 보다 실제적인 진동하는 에어 포일의 비정상 공력 해석 연구에 적용 가능함을 확인하였다.

Rotor-Blade Shape Design and Power-Performance Analysis for Horizontal-Axis Tidal Turbine Using CFD (수평축 조류발전용 로터 블레이드 형상설계 및 CFD에 의한 출력성능해석)

  • Jung, Ji Hyun;Kim, Bum Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.661-668
    • /
    • 2015
  • We present a design methodology for horizontal-axis tidal turbine blades based on blade element momentum theory, which has been used for aerodynamic design and power-performance analysis in the wind-energy industry. We design a 2-blade-type 1 MW HATT blade, which consists of a single airfoil (S814), and we present the detailed design parameters in this paper. Tidal turbine blades can experience cavitation problems at the blade-tip region, and this should be seriously considered during the early design stage. We perform computational fluid dynamics (CFD) simulations considering the cavitation model to predict the power performance and to investigate the flow characteristics of the blade. The maximum power coefficient is shown to be about 47 under the condition where TSR = 7, and we observed cavitation on the suction and pressure sides of the blade.

An Efficient Global Optimization Method for Reducing the Wave Drag in Transonic Regime (천음속 영역의 조파항력 감소를 위한 효율적인 전역적 최적화 기법 연구)

  • Jung, Sung-Ki;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.248-254
    • /
    • 2009
  • The use of evolutionary algorithm is limited in the field of aerodynamics, mainly because the population-based search algorithm requires excessive CPU time. In this paper a coupling method with adaptive range genetic algorithm for floating point and back-propagation neural network is proposed to efficiently obtain a converged solution. As a result, it is shown that a reduction of 14% and 33% respectively in wave drag and its consumed time can be achieved by the new method.

A Study on the Performance Estimation and Shape Design of a Counter-Rotating Tidal Current Turbine (상반전 조류발전 터빈의 형상설계 및 성능예측에 관한 연구)

  • Kim, Mun-Oh;Kim, You-Taek;Lee, Young-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.586-592
    • /
    • 2014
  • This study looks at the design of a 100 kW blade geometry for a horizontal marine current turbine using the Blade Element Momentum Theory (BEMT) and by using (CFD), the power output, performance and characteristics of the the fluid flow over the blade is estimated. Three basic airfoils; FFA-W3-301, DU-93-W210 and NACA-63418, are used along the blade span and The distribution of the chord length and twist angles along the blade are obtained from the hydrodynamic optimization procedure. The power coefficient curve shows maximum peak at the rated tip speed ratio of 5.17, and the maximum power reaches about 101.82 kW at the power coefficient of 0.495.

Modeling of a Rotor System Incorporating Active Tab and Analysis of BVI Noise Reduction Characteristics (능동 탭 로터 모델링 및 BVI 소음 저감 특성 해석)

  • Kim, Do-Hyung;Kang, Hee Jung;Wie, Seong-Yong;Kim, Seung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.11
    • /
    • pp.855-864
    • /
    • 2013
  • Active tab is one of the promising technology for the BVI (blade-vortex interaction) noise reduction, and analysis of noise reduction performance is very important phase of the technology development. For the purpose of analysing the performance of noise reduction using active tab, CAMRAD II model for a model-scale rotor system was constructed utilizing structural design result and airfoil aerodynamic data generated by CFD (computational fluid dynamics) calculation. HHC strategy was applied to descent flight condition and air-load was calculated by CAMRAD II then variations of BVI noise was calculated by in-house program. Calculation result with respect to tab length and control phase changes showed BVI noise could be reduced by -3.3dB.

Calculation of Hydrodynamic Characteristics of Weis-Fogh Type Water Turbine Using the Advanced Vortex Method (개선 와법을 이용한 Weis-Fogh형 수차의 유체역학적 특성계산)

  • Ro, Ki Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.203-210
    • /
    • 2014
  • In this study, the hydrodynamic characteristics of Weis-Fogh type water turbine were calculated by the advanced vortex method. The wing (NACA0010 airfoil) and both channel walls were approximated by source and vortex panels, and free vortices are introduced away from the body surfaces. The distance from the trailing edge of the wing to the wing axis, the width of the water channel and the maximum opening angle were selected as the calculation parameters, the important design factors. The maximum efficiency and the power coefficient for one wing of this water turbine were 26% and 0.4 at velocity ratio U/V=2.0 respectively. The flow field of this water turbine is very complex because the wing moves unsteadily in the channel. However, using the advanced vortex method, it could be calculated accurately.

Analysis of the Longitudinal Static Stability and the Drop Trajectory of a Fighter Aircraft's External Fuel Tank (전투기 외부 연료 탱크의 종방향 정안정성 및 투하 궤적 해석)

  • Kang, Chi-Hang;Cho, Hwan-Kee;Jang, Young-Il;Lee, Sang-Hyun;Kim, Kwang-Youn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.274-279
    • /
    • 2010
  • The present work is to analyze the longitudinal static stability and the drop trajectory of fighter aircraft's external fuel tank, of which horizontal fin is modified as the 20% scale down size compared with the original one. The analytical results to the pitching stability of external fuel tank using a thin airfoil's aerodynamic force data show the corresponding tendency to results of wind tunnel experiment. Results of trajectory simulation by the 6 degree of freedom equations of motion, comparing with drop trajectories of wind tunnel experiment, are shown that aircraft's attitude affects strongly on horizontal movement but not on the vertical movement. Those results give the reliability to aircraft safety when the external fuel tank with the 20% reduced horizontal fins is released from aircraft based on the flight manual.

A Sizing Method for Solar Power Long Endurance UAVs (태양에너지 기반 장기체공 무인기 주요 치수 결정 방법론)

  • Lee, Ju-Ho;Lee, Chang-Gwan;Lim, Se-Sil;Kim, Keum-Seong;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.758-766
    • /
    • 2010
  • The design procedure of Solar Power UAVs is complicated because the configuration and required power for flight must be considered simultaneously as the supplied power is influenced by the wing area. In order to minimize trial and error for the Solar Power UAVs design, a systematic sizing method is proposed which can be used to determine whether a Solar Power UAV is feasible for a given mission, and to derive preliminary dimensional specification of it. The sizing procedure begins with initially assumed wing area because the power, lift, and drag of the wing are directly proportional to it. The assumed wing area and mission requirements are then used to determine step by step the airfoil specifications including lift coefficient and drag coefficient, weight, required power, and wing area. This procedure is iterated for each newly assumed wing area until the error between the assumed wing area and calculated wing area becomes significantly small enough. This sizing methodology was applied to previously developed Solar Power UAVs for validation purposes, resulting in good agreement. The methodology was also applied to determine the dimensions and specifications of the Solar Power High-Altitude Long-Endurance UAV.