• Title/Summary/Keyword: 에멀젼 연료

Search Result 36, Processing Time 0.022 seconds

Effects on the Characteristics of Combustion by using Emulsion Fuel in Diesel Engine (디젤기관에 있어서 에멀젼 연료가 연소특성에 미치는 영향)

  • Lim, J.K.;Cho, S.G.;Hwang, S.J.;Yoo, D.H.;Seo, J.W.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.41-42
    • /
    • 2006
  • A study on the combustion characteristics by using Emulsion Fuel in Diesel Engine is performed experimentally. In this paper, the experiments are performed at engine speed 1800rpm, emulsion fuel ratio is 0%, 10%, 20%, and main measured items are specific fuel consumption, pressure, ratio of pressure rise, rate of heat release etc. The obtained conclusions are as follows. 1) Specific fuel consumption increase maximum 19.8% at low load, but is not effected at full load. 2) Ratio of pressure rise and rate of heat release are about the same in the case of 10% and 20% of emulsion fuel ratio. 3) Cylinder Pressure increase 11.7%, ratio of pressure rise increase 60.4% in case of emulsion fuel ratio 20% at full load. 4) Rate of heat release increase 76.9% in case of emulsion fuel ratio 20% at full load.

  • PDF

Basic Study of Behavior Characteristics of Emulsified Fuel with Fuel Design (연료설계에 의한 에멀젼연료의 거동특성에 관한 기초연구)

  • Yeom, Jeong-Kuk
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.22-28
    • /
    • 2015
  • A compression ignition type of diesel engine makes fuel efficiency better and $CO_2$ in the exhaust gas lower. Also it is suitable to apply alternative fuels(blended fuel) to the engine. The objective of this study is the emissions reduction of diesel engine with EF(Emulsified fuel). The emulsified fuel consists of diesel and peroxide($H_2O_2$) and Soot reduction without worsening of NOx emissions can be achieved by using thermal decomposition of the peroxide, i.e. the chemical effect of the OH radical in actual engine. For manufacturing emulsified fuel, a surfactant which is comprised of span 80 and tween 80 mixed as 9:1, was mixed with a fixed with 3% of the total volume in the emulsion fuel. In addition, considering the mixing ratio of the surfactant, the mixing ratio of $H_2O_2$ in the emulsified fuel was set as EF0, EF2, EF12, EF22, EF32, and EF42, respectively. Consequently, this study aims to obtain the optimization of fuel design(mixing) for the emulsified fuel applying to the diesel engine.

Study on Manufacturing Emulsion Oil Using Biodiesel Feedstock Oil Production By-product (바이오디젤 원료유 생산 부산물을 이용한 유화유 제조 연구)

  • Kim, Deogkeun;Jeon, Sanggoo;Yoon, Sangjun;Park, Soonchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.106.2-106.2
    • /
    • 2010
  • 동식물성 기름과 메탄올의 전이에스테르화 반응에 의해 생산되는 바이오디젤은 환경친화성과 지속가능성이 인정됨에 따라 그 생산량이 급격히 증가하고 있어 대두유, 유채유, 팜유 등의 원료유 부족과 가격 상승, 수급 불안정 등의 문제가 대두되고 있다. 이를 해결하기 위한 방안으로 유리지방산 함량이 높은 저가유지 자원(폐식용유, 폐돈지, 폐우지, soapstock, trapped grease)과 새로운 오일 작물을 이용한 생산 기술 연구가 활발히 진행되고 있다. 본 연구에서는 비활용 해외 열대작물 씨앗에서 착유한 식물성 오일을 정제하여 바이오디젤 원료유를 생산하는 과정에서 발생하는 폐기물(폐유, 폐수)의 경제적 처리 방안으로 유화유 제조 원료(벙커C유, 물)와 유화유 제조 첨가제(무기계, 유기계)로 활용 가능성을 검토하였다. 열대작물 오일의 물성 분석 결과 고형물, 수분, 인지질(phospholipid), 유리지방산(free fatty acid) 함량이 기존 원료유보다 매우 높게 나타났다. 인지질은 바이오디젤 제조 반응후 에스테르와 글리세린의 층분리를 방해하고 유리지방산은 염기촉매와 결합하여 지방산염을 생성해 생산 수율을 감소시킨다. 고형물과 수분 역시 촉매반응에 악영향을 가지나 여과와 감압증발에 의해 쉽게 제거가 가능하다. 유리지방산은 산촉매 에스테르화 반응에 의해 제거가 가능하다. 인지질은 탈검(degumming) 과정을 통해 제거하며 탈검은 수용성 탈검, 산 탈검, 세정 공정으로 구성된다. 착유한 원료유의 고형물을 제거 후 물과 수세하여 수용성 인지질을 수화하여 층 분리해 제거하고 상층의 오일은 추가적인 산 탈검을 수행한다. 그 뒤 세정을 통해 사용된 탈검제인 산과 추가적으로 수화된 인지질을 제거하게 된다. 이러한 3단계의 탈검 과정에서 하층으로 오일과 물이 폐기물로서 배출되며 본 연구에서는 배출 폐기물을 다시 층분리하여 오일층과 물 층으로 구분하여 유화유 제조에 사용되는 벙커C유, 물, 그리고 기존 유기계 및 무기계 유화제의 대체 가능성을 조사하였다. 유화 연료유는 기름과 물을 균일한 분산상으로 혼합한 연료유로 연소시 오일계 성분의 미연분을 감소시켜 연료 효율 제고와 배출가스 성상을 개선하기 위해 개발되어 왔다. 본 발표에서는 다양한 종류의 상용 첨가제 및 바이오디젤 원료유 생산 폐기물을 활용해 유화 연료유를 제조하였으며 각 유화유의 장시간의 상(phase) 안정성을 비교하였다. 바이오 폐기물 중에는 천연 계면활성제(surfactant)인 인지질이 다량 함유되어 있어 기존의 무기계 및 유기계 유화제보다 상 안정성이 우수하게 나타났으며 바이오디젤 원료유 생산 공정의 폐기물인 폐유과 폐수의 활용이 가능한 것으로 나타났다.

  • PDF

Emulsion Stability of Water/Oil Emulsified Fuel by associated with Emulsifiers (유화제 종류에 의한 Water/Oil 에멀젼 연료의 유화 안정성)

  • Kim, Moon-Chan;Lee, Chang-Suk;Park, Hea-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.395-403
    • /
    • 2008
  • In this study, the characteristics of emulsified fuel were studied. The emulsified fuel which was composed of water and diesel was manufactured by using homogenizer and ultrasonic generator. The more the percentage of water contents increases, the more the density increases to the emulsified fuel. However, the viscosity increased in the 60% of water contents and decreased in the 70% of water contents because the O/W type was formed. The 3 minutes's ultrasonic waves during the irradiation time was appropriate of 16,000 rpm. And the energy density of ultrasonic waves was 87.5J/g. The emulsion stability has improved in the lower temperature, the lower percentage of water contents, and the most stable emulsion state was obtained from 20%(w/w) of water contents. Also, the emulsion stability was related to the HLB values of emulsifiers. Especially, the HLB values of emulsifier were appropriate from 4 to 7 values.

Study of Experimental and Numerical Analysis on Behavior Characteristics of Emulsified Fuel (에멀젼연료 거동특성에 관한 실험 및 수치해석 연구)

  • Yeom, Jeong-Kuk
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.34-41
    • /
    • 2017
  • Diesel engines with compression-ignition type have superior thermal efficiency, durability and reliability compared to gasoline engine. To control emitted gas from the engines, it can be applied to alternative fuel without any modification to the engine. Therefore, in this study, as a basic study for applying emulsified fuel to the actual diesel engine, analysis of spray behavior characteristics of emulsified fuel was carried out simultaneously by experimental and numerical method. The emulsified fuel consist of diesel, hydrogen peroxide, and surfactant. The surfactant for manufacturing emulsified fuel is comprised of span 80 and tween 80 mixed as 9:1 and fixed with 3% of the total volume of the emulsified fuel. In addition, six kinds of emulsified fuel(EF0, EF2, EF12, EF22, EF32, and EF42) were manufactured according to the mixing ratio of hydrogen peroxide. The droplet and spray experiments were performed to observe the behavior characteristics of the emulsified fuel. The numerical analysis was carried out using ANSYS CFX to confirm the microscopic behavior characteristics. Consequently, rapid mixture formation can be expected due to evaporation of hydrogen peroxide in emulsified fuel, and it is confirmed that Reitz&Diwakar breakup model is most suitable as breakup model to be applied to the numerical analysis.

A Study on the Separation of Food-Waste Leachate into 3 Phases (음식물쓰레기 탈리액의 삼상분리)

  • Kim, Sangguk;Jeong, Minji;Kwon, Hyolee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.197-197
    • /
    • 2010
  • 음식물쓰레기의 삼성분은 수분, 휘발분, 회분이며 이들이 차지하는 비율은 계절, 지역별로 다소 상이하지만 수분 약 80%, 회분3%, 휘발분 17%이다. 음식물쓰레기 전처리과정으로 이물질제거, 탈수공정이 있으며 탈수공정에서 다량의 탈리액이 발생한다. 본 연구에서는 탈리액을 데칸타를 이용하여 1차로 원심분리하여 고.액 분리한 액을 실험대상으로 하였다. 실험대상 탈리액의 물성은 BOD 78,800[mg/l], COD 41,000[mg/l], 부유물질 25,900[mg/l], 총질소 928[mg/l]이었다. 탈리액에는 기름성분(육류, 식용유등), 입자상물질등이 포함되어 있으며 이들은 난분해성 유기물질로, 이를 제거하는데 기존의 처리방법으로 많은 어려움이 있어 주요한 수질오염 발생원이 되고 있다. 예를들면 하수처리장 폭기조 수면에 유막을 형성하여 산소공급을 방해함으로 미생물번식을 방해하는 요인이 된다. 본 연구는 음식물쓰레기 탈리액의 수분, 고형분, 유분으로의 삼상분리에 관한 것이다. 유분은 에멀젼형태로 안정되게 수층에 분산되어 존재한다. 미세기포를 이용한 부상법의 경우 미세기포 표면과 유분의 화학적친화력이 낮아 기포표면에 유분이 잘 부착되지 않으며, 원심분리 방법만으로는 유분 분리효율이 낮고, 추출에 의한 분리시 추출액이 다량 소요되고 처리시간이 길며 추출액 비용이 많이 소요된다. 탈리액을 유분, 슬러지, 수분으로 분리하면 환경오염을 일으키는 주요성분을 신재생에너지 원료로 활용할 수 있다. 유분의 주성분이 동식물성 유지이므로 전처리시 산촉매를 이용 수분과 유리지방산을 제거하고 염기성촉매를 이용하여 전이에스테르화 반응을 거치면 바이오디젤인 FAME과 글리세롤으로 변환하므로 글리세롤을 분리하면 바이오디젤을 얻을 수 있다. 슬러지는 입자상 물질로 착화가 잘 되고 건조하면 발열량이 높으며 중금속등에 오염되지 않아 청정연료로 활용이 가능하다. 실험실에서의 탈리액 삼상분리방법은 다음과 같다. 탈리액 30ml당 추출액으로 노말헥산을 1ml를 가한 다음 플라스크에서 $80^{\circ}C$로 가열 후 방냉한다. 가열중 노말헥산의 손실을 방지하기 위하여 증발가스를 콘덴서에서 응축하여 플라스크로 재순환한다. 탈리액을 플라스크에서 꺼내어 원심분리기 rack에 300-400g씩 병에 각각 넣고 4,000rpm으로 30분간 운전한다. 탈리액은 상부로부터 유분층, 미세입자층, 수층, 슬러지층으로 분리된다. 각 층의 계면에서 2종의 성분이 약간 섞일 수 있다. 유분을 분리한 후 유분층 잔존물과 미세입자층, 수층 상층부의 혼합물을 취하여 50g씩 병에 넣고 3,500rpm으로 10분간 운전한 후 유분을 분리한다. 마지막으로 미세입자층만을 3,500rpm으로 10분간 원심분리한 후 유분을 따로 분리한다. 얻어진 유분은 rotary evaporator에서 $120^{\circ}C$로 가열하여 유분과 노말헥산을 분리하며 분리효율을 제고하기 위하여 감압하에서 운전한다. 분리된 유분의 고위발열량이 9,450[Kcal/kg]이었으며 원소분석 결과 탄소 74.7%, 수소 12.55%, 질소 0.08%, 유황분 0.0003%이었다. 분리된 유분의 양은 계절별로 시료별로 다르며 가을철에는 1.6-1.9%, 여름철은 1.0-1.3%이었다. 분리된 슬러지로부터 Hg, As, Cr, Cd, Pb 중금속 성분이 검출되지 않았으며 수분 2.8%, 휘발분 76.85%, 회분 7.52%, 고정탄소 12.83%이었고 원소분석결과 탄소 45.25%, 수소 7.46%, 질소 5.05%, 산소 34.39%, 유황분 0.33%이었으며 저위발열량은 4,480[Kcal/kg]이었다. 분리된 슬러지 양은 11-19% 이었다.

  • PDF