• Title/Summary/Keyword: 에너지 최소화 알고리즘

Search Result 242, Processing Time 0.018 seconds

The Medium Access Scheduling Scheme for Efficient Data Transmission in Wireless Body Area Network (WBAN 환경에서 효율적 데이터 전송을 위한 매체 접근 스케줄링 기법)

  • Jang, EunMee;Park, TaeShin;Kim, JinHyuk;Choi, SangBan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.16-27
    • /
    • 2017
  • IEEE 802.15.6 standard, a Wireless Body Area Network, aims to transfer not only medical data but also non-medical data, such as physical activity, streaming, multimedia game, living information, and entertainment. Services which transfer those data have very various data rates, intervals and frequencies of continuous access to a medium. Therefore, an efficient anti-collision operations and medium assigning operation have to be carried out when multiple nodes with different data rates are accessing shared medium. IEEE 802.15.6 standard for CSMA/CA medium access control method distributes access to the shared medium, transmits a control packet to avoid collision and checks status of the channel. This method is energy inefficient and causes overhead. These disadvantages conflict with the low power, low cost calculation requirement of wireless body area network, shall minimize such overhead for efficient wireless body area network operations. Therefore, in this paper, we propose a medium access scheduling scheme, which adjusts the time interval for accessing to the shared transmission medium according to the amount of data for generating respective sensor node, and a priority control algorithm, which temporarily adjusts the priority of the sensor node that causes transmission concession due to the data priority until next successful transmission to ensure fairness.

A Study on Electron Dose Distribution of Cones for Intraoperative Radiation Therapy (수술중 전자선치료에 있어서 선량분포에 관한 연구)

  • Kang, Wee-Saing;Ha, Sung-Whan;Yun, Hyong-Geun
    • Progress in Medical Physics
    • /
    • v.3 no.2
    • /
    • pp.1-12
    • /
    • 1992
  • For intraoperative radiation therapy using electron beams, a cone system to deliver a large dose to the tumor during surgical operation and to save the surrounding normal tissue should be developed and dosimetry for the cone system is necessary to find proper X-ray collimator setting as well as to get useful data for clinical use. We developed a docking type of a cone system consisting of two parts made of aluminum: holder and cone. The cones which range from 4cm to 9cm with 1cm step at 100cm SSD of photon beam are 28cm long circular tubular cylinders. The system has two 26cm long holders: one for the cones larger than or equal to 7cm diamter and another for the smaller ones than 7cm. On the side of the holder is an aperture for insertion of a lamp and mirror to observe treatment field. Depth dose curve. dose profile and output factor at dept of dose maximum. and dose distribution in water for each cone size were measured with a p-type silicone detector controlled by a linear scanner for several extra opening of X-ray collimators. For a combination of electron energy and cone size, the opening of the X-ray collimator was caused to the surface dose, depths of dose maximum and 80%, dose profile and output factor. The variation of the output factor was the most remarkable. The output factors of 9MeV electron, as an example, range from 0.637 to 1.549. The opening of X-ray collimators would cause the quantity of scattered electrons coming to the IORT cone system. which in turn would change the dose distribution as well as the output factor. Dosimetry for an IORT cone system is inevitable to minimize uncertainty in the clinical use.

  • PDF