• Title/Summary/Keyword: 에너지 정의

Search Result 2,864, Processing Time 0.036 seconds

Proposal of Performance Evaluation Methodology for Hydropower Reservoirs with Resilience Index (회복탄력성을 고려한 발전용댐의 성능평가 방법론 제안)

  • Kim, Dong Hyun;Yoo, Hyung Ju;Shin, Hong-Joon;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.1
    • /
    • pp.47-56
    • /
    • 2022
  • Recently, water resources and energy policies such as integrated water management and carbon neutrality are changing rapidly. There is an opinion that the value of hydropower reservoirs related to these policies should be re-evaluated. In the past, they have contributed to flood control in addition to electricity generation, such as operating at a limited water level during the flood season, but loss of power generation is inevitable with this operation. Therefore, this study introduced the concept of resilience to the hydropower generation system to minimize the power loss. A framework for evaluating the power generation performance of them was presented by defining the maximization of electricity sales as performance. Based on the current procedure of multiple operation plan, a scenario was established and simulation was performed using HEC-5. As a result of applying to the framework, it was confirmed that the power generation performance according to each scenario was evaluated as an important factor. And it was confirmed that the performance of flood control and water use could also be evaluated.

Study on Estimation Methods of Life Cycle GHGs Emission for the Mine Reclamation Project (광해방지사업의 전과정 온실가스 배출량 산정방법에 대한 연구)

  • Kim, Soo-lo;Kwak, In-Ho;Wie, Dae-Hyung;Park, Kwang-ho;Baek, Seung-Han
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.733-741
    • /
    • 2021
  • Globally, in accordance with the goals set forth in the 2015 Paris Climate Agreement, each country has established and declared a reduction target for carbon neutrality by 2050. The roadmaps for establishing long-term greenhouse gas emissions development strategies and setting reduction targets have been announced. As the international community accelerates the transition to the net-zero society, 128 countries have declared net-zero by the end of 2020, and the net-zero declaration continues to expand around G20 member states. In December 2020, Korea announced the "2050 Net-zero Strategy" to establish a foundation for simultaneously achieving carbon reduction, economic growth, and improved quality of life for the people through active response to the net-zero, and pursuing policy tasks in stages to do this. Comprehensive carbon management is insufficient due to the lack of comprehensive carbon management due to the departure from the areas of mandatory reduction, such as the GHG energy target management system and the GHG emissions trading offset system implemented to reduce greenhouse gases in Korea. Currently, there is no cases for estimation or calculation of carbon dioxide emissions for the Mine Reclamation projects. It is reviewed the standard methods proposed by domestic and foreign carbon emission calculation methods and proposed appropriate carbon emission estimation methods for the Mine Reclamation projects in this study.

Numerical Analysis Study on the Turbulent Flow Characteristics around the Rotor Sail for Vessels (선박용 로터세일 주위의 난류 유동특성에 관한 수치해석적 연구)

  • Kim, Jung-eun;Cho, Dae-Hwan;Lee, Chang-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.648-656
    • /
    • 2022
  • As environmental regulations such as the International Maritime Organization (IMO)'s strategy to reduce greenhouse gases(GHG) are strengthened, technology development such as eco-friendly ships and alternative fuels is expanding. As part of this, ship propulsion technology using energy reduction and wind propulsion technology is emerging, especially in shipping companies and shipbuilders. By securing wind propulsion technology and introducing empirical research into shipbuilding and shipping, a high value-added market using eco-friendly technology can be created. Moreover, by reducing the fuel consumption rate of operating ships, GHG can be reduced by 6-8%. Rotor Sail (RS) technology is to generate a hydrodynamic lift in the vertical direction of the cylinder when the circular cylinder rotates at a constant speed and passes through the fluid. This is called the Magnus effect, and this study attempted to propose a plan to increase propulsion efficiency through a numerical analysis study on turbulence flow characteristics around RS, a wind power assistance propulsion system installed on a ship. Therefore, CL and CD values according to SR and AR changes were derived as parameters that affect the aerodynamic force of the RS, and the flow characteristics around the rotor sail were compared according to EP application.

Development of Smart Speed Bump Using Non-newtonian Fluid (비뉴턴 유체를 이용한 스마트 과속방지턱 소재 개발)

  • Jung, Injun;Kim, Eunjung;Yu, Woong-Ryeol;Na, Wonjin
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.277-282
    • /
    • 2022
  • In this study, a smart material applicable to speed bumps was developed using low-cost starch and waterbased suspensions, and their properties were investigated. Viscosity and shear stress according to the shear rate was measured by a rheometer to observe shear thickening behavior according to starch concentration. The shear thickening phenomenon and applicability to speed bumps were identified macroscopically via drop weight test and bike driving test, measuring the vibration after impact with a driving speed of 5-25 km/h. As a result of the viscosity measurement, shear thickening occurred after the shear thinning region at the beginning, and the critical strain causing the shear thickening phenomenon decreased as the concentration of starch increased. Also, the viscosity and shear stress increased significantly with the increase of the starch concentration. As a result of the drop weight test and the bike driving test, the suspension was changed to a solid-like state in a short time, and the impact energy was absorbed in the fluid. The shear thickening phenomenon easily occurred as the concentration of the fluid and the applied impact (velocity) increased. Therefore, it can be proposed the development of a smart speed bump material that operates in the range of 5-25 km/h with a Non-Newtonian fluid based on water and starch.

Characteristics of PAHs Concentration in Soil Contamination Concerned Area of Gwangju (광주지역 토양오염우려지역의 PAHs 농도 특성 연구)

  • Yoon, Sang Hoon;Lee, Woo Jin;Lim, Min Hwa;Jeong, Yeon Jae;Park, Mi Ae;Jeon, Hong Dae;Park, Byoung Hoon;Seo, Gwang Yeob;Bae, Seok Jin;Park, Jeong Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.2
    • /
    • pp.50-60
    • /
    • 2022
  • The concentration levels and distribution characteristics of 16 polycyclic aromatic hydrocarbons (PAHs) were investigated and evaluated for total 100 soil samples as a part of the survey on soil contamination in Gwangju. The results (median and range) of T-PAHs (sum of 16 PAH concentrations), C-PAHs (sum of carcinogenic PAH concentrations) and T-TEQs (sum of 16 TEQ concentrations) were 20.8 (7.6~1158.1), 2.2 (N.D~509.6), and 0.3 (N.D~424.6) ㎍/kg, respectively. There was a positive correlation between C-PAHs/T-PAHs and T-TEQs/T-PAHs except one point where the concentration of benzo(a)pyrene was high. The ratios of the C-PAHs/T-PAHs were 31.7% for low molecular weight-PAHs and 68.3% for high molecular weight-PAHs, suggesting that PAHs generation mainly arose from combustion sources. The ratio of isomers of individual PAHs, Phe/Ant, Flu/Pyr, Ant/(Ant+Phe), Flu/(Flu+Pyr), and BaA/(BaA+Chr), also confirmed the predominance of PAHs from combustion activities. Statistical tracing of the source of PAHs through principal component analysis indicated that the main sources of combustion were automobile fuel and coal. The overall results of this study suggested HMW-PAHs, T-PAHs, C-PAHs and T-TEQs should be separately evaluated to better assess the toxicity and environmental behavior of individual PAHs.

Countermeasures to the Introduction of Low Caloric Gas Fuel for Natural Gas Engine (저열량 가스 적용에 따른 천연가스엔진의 대응 방안 연구)

  • Park, Cheol-Woong;Kim, Chang-gi;Oh, Se-Chul;Lee, Jang-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.34-41
    • /
    • 2021
  • In order to cope with the problems that may occur when the natural gas used in Korea becomes low in calories, the problems that may have to the domestic industrial gas equipment must be identified in advance, and based on this, countermeasures for efficient use of energy must be preceded. In this study, in order to solve the problem of deterioration of engine output performance and efficiency due to the introduction of low calorific gas when using a lean-burning natural gas engine that complies with the EURO-6 regulation, specific control plans and results based on the experiment are intended to be presented. In order to identify the improvement effect by the control variable represented by the ignition timing under the full load condition at the engine speed of 1,400 rpm and 550 Nm, 2,100 rpm, which is the engine speed at the rated operation condition, the thermal efficiency and exhaust gas characteristics were identified and optimized by changing the ignition timing for each gas fuel. In the case of pure methane, which shows the lowest value based on the torque under the full load condition, if the ignition timing is advanced by about 2 CAD from the reference ignition timing, the torque can be compensated without a large increase in NOx emission.

Estimation of Employment Creation Center considering Spatial Autocorrelation: A Case of Changwon City (공간자기상관을 고려한 고용창출중심지 추정: 창원시 사례를 중심으로)

  • JEONG, Ha-Yeong;LEE, Tai-Hun;HWANG, In-Sik
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.1
    • /
    • pp.77-100
    • /
    • 2022
  • In the era of low growth, many provincial cities are experiencing population decline and aging. Population decline phenomena such as reduction of productive manpower, reduction of finances, deterioration of quality of life, and collapse of the community base are occurring in a chain and are being pushed to the brink of extinction of the cities. This study aims to propose a methodology to objectively estimate the employment creation centers and setting the basic unit of industrial-centered zoning by applying spatial statistical techniques and GIS for the application of the compact city plan as an efficient spatial management policy in a city with a declining population. In details, based on reviewing previous studies on compact city, 'employment complex index(ECI)' were defined considering the number of workers, the number of settlers, and the area of development land, the employment creation center was estimated by applying the 'Local Moran's I' and 'Getis-Ord's Hot-Spot Analysis'. As a case study, changes in the four years of 2013, 2015, 2017, and 2019 were compared and analyzed for Changwon City. As a result, it was confirmed that the employment creation center is becoming compacted and polycentric, which is a significant result that reflects the actual situation well. This results provide the basic data for functional and institutional territorial governance for the regional revitalization platform, and provide meaningful information necessary for spatial policy decision-making, such as population reduction, regional gross domestic product, and public facility arrangement that can respond to energy savings, transportation plans, and medical and health plans.

A Case Study on the Risk Analysis for the Installation of Measurement Error Verification Facility in Hydrogen Refueling Station (수소 충전소 계량오차 검증 설비 설치를 위한 위험성 분석 사례 연구)

  • Hwayoung, Lee;Hyeonwoo, Jang;Minkyung, Lee;Jeonghwan, Kim;Jaehun, Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.30-36
    • /
    • 2022
  • In commercial transactions of energy sources using hydrogen charging stations, high-accuracy flow meters are needed to prevent accidents such as overcharging due to inaccurate measurements and to ensure transparency in hydrogen commercial transactions through accurate measurements. This research developed a Corioli-type flowmeter prototype and conducted a risk assessment to prevent accidents during a process change comparison experiment for existing charging stations to verify the measurement performance. A process change section was defined for the installation of measurement facilities for empirical experiments and HAZOP was conducted. In addition, JSA was also conducted to secure the safety of experimenters, such as preventing valve mis-opening during empirical experiments. Measures were established to improve the risk factors derived through HAZOP, and work procedures were established to minimize human errors and ensure the safety of workers through JSA. The design change and system manufacturing for the installation of the metering system were completed by reflecting the risk assessment results, and safety could be confirmed through the performance comparison test of the developed meter prototype. The developed prototype flow meter showed a total of 30 flow measurements under the operating conditions of 70 MPa, and the average error was -1.58% to 3.96%. Such a metering error was analyzed to have the same performance as a flow meter installed and operated for commercial use.

Development of Real-time Groundwater Quality Monitoring and Advanced Groundwater Purification Technology for Groundwater using Photoinduced Reactive Oxygen Species (지하수 수질 실시간 모니터링 및 광유도 활성산소를 이용한 고도수처리 기술)

  • Kang-Kyun Wang;Byung-Woo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.15-15
    • /
    • 2023
  • 2020년 기준 국내 상수도 보급률은 99.1% 차지하고 있으며(환경부, 2019), 수도관리차원에서 수돗물은 먹는 물로 시판되어질 만큼 우수한 관리체계를 유지하고 있다. 그 반면에 지하수는 생활용수, 식품가공, 농·축산, 양어, 군부대를 비롯한 전국지역에서 연간 10억 8천만톤 용수를 소비하고 있음에도 (환겨례 신문, 2013; 환경부, 2019) 사용되는 지하수의 약 65%가 음용수 불가판정을 받았으며, 최근 지하수의 오염비율은 급격히 증가하는 추세이다. 특히, 지하수관정의 관리부주의에 의한 수질오염 및 수인성 다제내성균(슈퍼박테리아) 등에 의한 오염사례가 국내는 물론, 국제적으로 다수 보고되고 있는 실정이다 (환경부, 2013). 현재 지하수 수질관리는 공공기관 및 지자체 지정기관을 통해 진행되고 있으며, 검사기간은 수질채취로부터 통상 7~15일정도 소요되어 수질 관리 및 기준, 검사주기에 대한 애로가 많다. 현장 지하수관정에서 실시간 수질을 모니터링하고 이에 연동된 자동 수처리 시스템의 개발 및 도입은 나날이 심각해지는 환경오염 상황에서 선제적 예방과 해결방법으로 중요한 요소기술이다. 현재 지하수오염 및 부적합 음용의 수질처리는 화학약품, 필터여과, UV살균, O3 (플라즈마)을 이용하는 것이 대표적이나, 화학약품의 경우 2차 오염이나 식품 세척 및 가공에 있어 부적합성의 한계점이 있다. 필터여과의 대표적인 RO필터의 경우 약 50% 순손실이 발생하고, UV 살균의 경우 UV에 의한 사용관리자의 위험 및 장비의 광부식 문제, O3 의 경우 고압전류 사용에 따른 위험성 등의 한계점이 나타나고 있다. 지하수 수질정화를 위한 광유도 활성산소(1O2, ·O-2)는 광감응제에 가시광의 빛 조사를 통해 생성되는 활성산소로의 에너지 및 전자 전이가 동시 진행되어 단일항 산소(1O2)와 슈퍼옥사이드 이온(·O-2)을 생성하게 된다. 생성된 활성산소는 유해미생물 또는 유기화학물과 개열, 제거, 치환 반응 등을 통해 미생물사멸 및 유해화학물질들이 분해 가능하다. 이를 이용한 지하수 유해미생물 사멸기술, 장비, 실시간 지하수의 분석기술 및 정수처리, 지하수 물순환 시스템 개발뿐만 아니라 지하수 음용수 및 오염개선, 지하수 기저유출에 의한 오염원 저감으로부터 지류·지천, 하천 본류 수질개선 등의 대상지역에 활용 가능하다. 또한 광유도 활성산소는 기존 상수도 수처리에 있어 오존(O3) 처리와 이산화티탄을 이용한 AOP과정을 단일처리 공정으로, 기존 O3 의 특성상 확산 거리가 매우 길어 사람을 포함한 생체 내에 유입 시 다양한 부작용 발생과 O3 차폐시설 요구의 문제점 극복의 대안으로 환경 및 인체에 무해한 광유도 활성산소 시스템을 적극적으로 도입 및 적용해야 한다. 본 연구 목적은 정류상태 흡광분광기술을 이용한 실시간 수질 모니터링과 광유도 활성산소를 이용한 유해 미생물의 멸균효능 및 지하수 수질관리 기술로의 적용 가능성을 제시하고자 한다.

  • PDF

Development and Application of Tunnel Design Automation Technology Using 3D Spatial Information : BIM-Based Design for Namhae Seomyeon - Yeosu Shindeok National Highway Construction (3D 공간정보를 활용한 터널 설계 자동화 기술 개발 및 적용 사례 : 남해 서면-여수 신덕 국도 건설공사 BIM기반 설계를 중심으로)

  • Eunji Jo;Woojin Kim;Kwangyeom Kim;Jaeho Jung;Sanghyuk Bang
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.209-227
    • /
    • 2023
  • The government continues to announce measures to revitalize smart construction technology based on BIM for productivity innovation in the construction industry. In the design phase, the goal is design automation and optimization by converging BIM Data and other advanced technologies. Accordingly, in the basic design of the Namhae Seomyeon-Yeosu Sindeok National Road Construction Project, a domestic undersea tunnel project, BIM-based design was carried out by developing tunnel design automation technology using 3D spatial information according to the tunnel design process. In order to derive the optimal alignment, more than 10,000 alignment cases were generated in 36hr using the generative design technique and a quantitative evaluation of the objective functions defined by the designer was performed. AI-based ground classification and 3D Geo Model were established to evaluate the economic feasibility and stability of the optimal alignment. AI-based ground classification has improved its precision by performing about 30 types of ground classification per borehole, and in the case of the 3D Geo Model, its utilization can be expected in that it can accumulate ground data added during construction. In the case of 3D blasting design, the optimal charge weight was derived in 5 minutes by reviewing all security objects on the project range on Dynamo, and the design result was visualized in 3D space for intuitive and convenient construction management so that it could be used directly during construction.